双连双拱双膜塑料大棚温度场分布及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature Field Distribution and Application of Double-span and Double-film Covered Plastic Greenhouse
  • 作者:尹庆珍 ; 宫彬彬 ; 张天策 ; 郄丽娟 ; 赵付江 ; 韩建会
  • 英文作者:Yin Qingzhen;Gong Binbin;Zhang Tiance;Qie Lijuan;Zhao Fujiang;Han Jianhui;Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences;College of Horticulture, Agricultural University of Hebei;School of Electrical and Electronic Engineering, North China Electric Power University;
  • 关键词:双连双拱双膜塑料大棚 ; 温度场 ; 分布 ; MATLAB软件
  • 英文关键词:double-span and double-film covered plastic greenhouse;;temperature field;;distribution;;MATLAB software
  • 中文刊名:ZNTB
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:河北省农林科学院经济作物研究所;河北农业大学园艺学院;华北电力大学电气与电子工程学院;
  • 出版日期:2019-01-31
  • 出版单位:中国农学通报
  • 年:2019
  • 期:v.35;No.511
  • 基金:河北省财政专项“不同棚室类型环境因子分析及在蔬菜生产中的应用”(F16R01,F17R02);; 河北省第三批“巨人计划”——蔬菜科研创新团队项目
  • 语种:中文;
  • 页:ZNTB201904018
  • 页数:9
  • CN:04
  • ISSN:11-1984/S
  • 分类号:122-130
摘要
为研究新型双连双拱双膜塑料大棚温度场分布及其保温性能问题,基于2016年3月8—10日的新型双连双拱双膜塑料大棚内外GL820绝缘多通道数据记录仪、中长图彩色无纸记录仪、光电式总辐射传感器V2.0的温度、光照记录数据,应用MATLAB软件进行二维温度场的拟合和图像绘制。结果表明:06:01为大棚最低温度,最低气温9日>8日>10日;08:01—12:01为温度上升期;8日、10日12:01—16:01为大棚最高温度,9日14:01—16:01为大棚最高温度;22:01温度8日、10日>9日。阴天的8日或阴~晴的9日09:01先从大棚的下部升温,12:01—16:01大棚上部升温较快,20:01—22:01大棚上部降温较快;晴天的10日9:01先从大棚的上部升温,12:01—16:01是3天的最高温度,18:01从大棚下部开始降温,20:01—22:01大棚上部气温最低。在大棚温度最低时或最高时,大棚顶部最高点对应为大棚温度最低点或最高点。夜间00:01—08:01期间10 cm地温较低,地温8日>9日>10日;10日07:00—08:00地温最低(11.3℃)。棚内、外光照强度差距较大,光照强度10日>8日>9日。双连双拱双膜塑料大棚在2月中旬喜温果菜类可以定植,早于单膜塑料大棚25~30天,在春提早方面优势明显。
        The paper aims to study the temperature field distribution and insulation performance of a new double-span and double-film covered plastic greenhouse. It was based on the temperature and light recording data from GL820 insulated multi-channel data recording, medium-length color paperless recorder,photoelectric total radiation sensor V2.0 in the new double-span and double-film covered plastic greenhouseon March 8, 9, and 10, 2016. The MATLAB software was used to fit the two-dimensional temperature field andimage rendering. The results showed that 06:01 had the minimum temperature inside the greenhouse. Thelowest temperature was March 9> March 8> March 10. 08:01 to 12:01 was the temperature rising period. OnMarch 8 and 10, 12:01 to 16:01 had the highest temperature inside the greenhouse, and on March 9, 14:01 to16:01 had the highest temperature inside the greenhouse. The greenhouse temperature at 22:01 was March 8and March 10> March 9. The temperature rose from the lower part of the greenhouse at 09:01 on the cloudy dayMarch 8 and the cloudy and sunny day March 9. The upper part of the greenhouse warmed up faster from 12:01to 16:01. The upper part of the greenhouse cooled faster from 20:01 to 22:01. The temperature rose from theupper part of the greenhouse from 9:01 on the sunny day March 10. 12:01 to 16:01 had the highest temperaturefor 3 days, and the lower part of the greenhouse started to cool down at 18:01. The temperature in the upperpart of the greenhouse was the lowest from 20:01 to 22:01. When the greenhouse temperature was the lowest orthe highest, the temperature of highest point on the top of the greenhouse was corresponding to the greenhousetemperature. During the night from 00:01 to 08:01, the soil temperature was relatively low. The soiltemperature under 10 cm was March 8> March 9> March 10. From 07:00 to 8:00 on March 10, the soiltemperature under 10 cm was the lowest(11.3℃). There was a big gap between the light intensity inside andoutside the greenhouse, and the light intensity was March 10> March 8> March 9. The thermophilic fruit vegetables could be planted in the middle of February in double-span and double-film covered plastic greenhouse, 25-30 d earlier than the single-film plastic greenhouse. It has obvious advantages in early planting in spring.
引文
[1]张潇丹.非耕地日光温室墙体蓄热保温性能数值模拟分析[D].兰州:甘肃农业大学,2017.
    [2]郭芬芬.基于MATLAB日光温室土壤二维传热模型的建立与应用[D].保定:河北农业大学,2014.
    [3]孟力力,杨其长,闻婧,等.MATLAB和VB在温室环境模型构建中的混合编程研究[J].中国农学通报,2012,28(6):262-268.
    [4]王丽艳.基于MATLAB的温室作物适宜环境参数优化与调控技术研究[D].沈阳:沈阳农业大学,2009.
    [5]何雨,须晖,李天来,等.日光温室后墙内侧温度变化规律及温度预测模型[J].北方园艺,2012(7):34-39.
    [6]何雨,须晖,李天来,等.日光温室后屋面内侧温度变化规律及温度预测模型[J].现代农业科技,2012(5):270-273.
    [7]刘振宇,武志强,赫晓燕,等.基于MATLAB的文丘里模型和普通模型下鸡舍流感病毒的数字模拟和仿真[J].科学技术与工程,2018,18(6):291-298.
    [8]付晨,李丽华,于尧,等.基于MATLAB鸡舍春季温度的分析与预测[J].农机化研究,2013(1):61-63.
    [9]高倩.温室大棚环境参数控制[D].沈阳:沈阳工业大学,2012.
    [10]崔庆法,王静.连栋温室可移动式双层内保温幕保温节能效果初探[J].农业工程学报,2002,18(6):111-114.
    [11]杨靖华,陈龙正,徐海,等.苏中地区早春连栋大棚不同覆盖层次间的气温变化[J].江苏农业科学,2015,43(1):407-408.
    [12]朱佳敏,杨栋,郭建民,等.南方双膜塑料大棚内气温的谐波模拟[J].中国农学通报,2017,33(9):133-140.
    [13]魏鑫,李建设,高艳明.大跨度双膜双拱塑料大棚夏季降温能力测试研究[J].北方园艺,2016(10):45-51.
    [14]魏鑫.宁夏非耕地新型日光温室及不同跨度塑料大棚环境性能测试与分析[D].银川:宁夏大学,2016.
    [15]吴元中,李军,杨秋珍.蔬菜三连栋大棚内外冬季温度变化研究[J].中国生态农业学报,2002,10(4):42-43.
    [16]朱佳敏,杨栋,郭建民,等.南方双膜塑料大棚内气温的谐波模拟[J].中国农学通报,2017,33(9):133-140.
    [17]周建军,赵国新,王秀,等.连栋温室番茄生长环境监测系统设计与试验[J].江苏农业科学,2017,45(17):222-225.
    [18]沈贝蓓.双连栋塑料大棚的温度特征[D].郑州:河南农业大学,2014.
    [19]杨靖华.苏中地区连栋单、双层大棚小气候及秋延栽培效果比较[D].南京:南京农业大学,2014.
    [20]郄丽娟,赵付江,韩晓倩,等.改良型塑料大棚的设计与建造[J].河北农业科学,2016,20(6):49-51.
    [21]郄丽娟,赵付江,韩晓倩,等.三连栋日光温室的结构设计与建造[J].河北农业科学,2014,18(2):100-103.
    [22]郄丽娟,赵付江,韩晓倩,等.三连栋日光温室的温度性能分析[J].河北农业科学,2016,20(3):27-31.
    [23]郄丽娟,赵献辉,许广义,等.三连栋日光温室拱式桁架结构静力分析与结构优化[J].中国农学通报,2014,30(35):242-247.
    [24]郄丽娟,赵付江,韩晓倩,等.双屋面日光温室的结构设计和温光性能分析[J].中国农学通报,2014,30(5):145-148.
    [25]郄丽娟,赵付江,韩晓倩,等.乐亭日光温室的温度环境及长季节黄瓜栽培的可行性分析[J].河北农业科学,2012,16(6):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700