XLPE电缆内置分布式光纤的温度监测试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature Monitoring Experiment for XLPE Built-in Distributed Optical Fiber
  • 作者:邱伟豪 ; 阳林 ; 郝艳捧 ; 陈云 ; 邓声华 ; 温志铭
  • 英文作者:QIU Weihao;YANG Lin;HAO Yanpeng;CHEN Yun;DENG Shenghua;WEN Zhiming;Maoming Power Supply Bureau of Guangdong Power Grid Co.,Ltd.;School of Electric Power,South China University of Technology;Guangzhou Lingnan Cable Co.,Ltd.;
  • 关键词:交联聚乙烯 ; Brillouin光时域反射计 ; 分布式光纤 ; 电力电缆 ; 温度分布
  • 英文关键词:XLPE;;Brillouin optical time domain reflectometry;;distributed optical fiber;;power cable;;temperature distribution
  • 中文刊名:GDDL
  • 英文刊名:Guangdong Electric Power
  • 机构:广东电网有限责任公司茂名供电局;华南理工大学电力学院;广州岭南电缆股份有限公司;
  • 出版日期:2018-09-05 17:04
  • 出版单位:广东电力
  • 年:2018
  • 期:v.31;No.246
  • 基金:国家自然科学基金项目(U1766220)
  • 语种:中文;
  • 页:GDDL201808026
  • 页数:7
  • CN:08
  • ISSN:44-1420/TM
  • 分类号:182-188
摘要
为直接监测导体和绝缘层温度分布,利用Brillouin光时域反射测温技术,将感温光纤分别植入110 kV交联聚乙烯(cross-linked polyethylene,XLPE)电缆的导体中央、绝缘屏蔽层表面和阻水带中央。在沟槽、水和回填砂中进行了7次加载阶跃电流的升温试验,得到了热电偶和光纤测得的电缆各径向和轴向温度。试验结果表明,在上述3个径向位置植入光纤是可行的,但导体光纤容易受到机械损伤,可靠性相对较低。光纤的轴向温差不超过0.22℃,比热电偶的轴向温差小,且不易受敷设环境和电流大小的影响。由于热电偶敷设深度难以控制,绝缘屏蔽层和阻水带光纤与相应径向位置热电偶的测温结果存在差异,当电缆在水中敷设时二者差异最大可达3.8℃。
        In order to directly monitor temperature distribution of the conductor and the insulation layer,this paper uses Brillouin optical time domain reflectometry technology to respectively implant temperature sensing optical fibers into the conductor center,surface of the insulation shielding layer and the center of water-blocking tape of 110 kV XLPE.In the groove,water and backfilled soil,it carries out seven times of temperature rise experiments with loaded step current and obtains radial and axial temperatures of cables respectively measured by the thermocouple and the optical fiber.The experimental results indicate it is feasible to implant optical fibers in the above three positions but the conductor fiber is susceptible to mechanical damages and has relatively low reliability.The axial temperature difference of the optical fiber is less than0.22 ℃,which is smaller than that of thermocouple and is not susceptible to laying environment and current.Because it is hard to control laying depth of the thermocouple,temperatures of the insulation shielding layer fiber and the water-blocking tape fiber are different from that of the thermocouple at the relevant axial location.The differences of temperatures of the fiber and the thermocouple may reach at 3.8 ℃ as the cable is laid in water.
引文
[1]谢书鸿,傅明利,尹毅,等.中国交联聚乙烯绝缘高压直流电缆发展的三级跳:从160 kV到200 kV再到320 kV[J].南方电网技术,2015,9(10):5-12.XIE Shuhong,FU Mingli,YIN Yi,et al.Triple jumps of XLPE insulated HVDC cable development in China:from160kV to 200 kV and then to 320 kV[J].Southern Power System Technology,2015,9(10):5-12.
    [2]BOUKEZZI L,BOUBAKEUR A.Prediction of mechanical properties of XLPE cable insulation under thermal aging:neural network approach[J].IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(6):2125-2134.
    [3]刘刚,谢月,李立浧.110 kV交联聚乙烯电缆绝缘层老化状态研究[J].广东电力,2015,28(10):72-77.LIU Gang,XIE Yue,LI Licheng.Research on aging state of insulating layer of 110 kV XLPE cable[J].Guangdong Electric Power,2015,28(10):72-77.
    [4]苏菲,姜涛,王兴振,等.220 kV双回路电缆金属护套感应电流计算及敷设方式对其影响分析[J].陕西电力,2016,44(9):85-88.SU Fei,JIANG Tao,WANG Xingzhen,et al.Calculation&analysis of circulating current in sheaths of 220 kV dual circuits arranged cables in different laying modes[J].Shaanxi Electric Power,2016,44(9):85-88.
    [5]苏瑞波,王鹏,罗海凹,等.采用均热铜环实现由三芯电缆表面温度准确计算导体温度的方法分析[J].广东电力,2016,29(12):98-103.SU Ruibo,WANG Peng,LUO Hai'ao,et al.Application of PSO-CSO algorithm in reactive power optimization for regional power grids[J].Guangdong Electric Power,2016,29(12):98-103.
    [6]王奇,李妍红.基于多分辨率分析与相关检测的海底电缆分布式故障检测[J].南方电网技术,2015,9(2):68-72.WANG Qi,LI Yanhong.Distributed fault test of submarine cable based on multi-resolution analysis and correlation detection[J].Southern Power System Technology,2015,9(2):68-72.
    [7]UKIL A,BRAENDLE H,KRIPPNER P.Distributed temperature sensing:review of technology and applications[J].IEEE Sensors Journal,2015,12(5):885-892.
    [8]韩卓展,刘刚,王鹏宇,等.高压电缆暂态热路中绝缘层最佳分层数的确定方法[J].广东电力,2017,30(10):28-34.HAN Zhuozhan,LIU Gang,WANG Pengyu,et al.Determination method for optimal hierarchy numbers of insulation layer in transient thermal circuit of high-voltage cable[J].Guangdong Electric Power,2017,30(10):28-34.
    [9]YILMAZ G,KARLIK S E.A distributed optical fiber sensor for temperature detection in power cables[J].Sensors&Actuators A Physical,2006,125(2):148-155.
    [10]CHO J,KIM J H,LEE H J,et al.Development and improvement of an intelligent cable monitoring system for underground distribution networks using distributed temperature sensing[J].Energies,2014,7(2):1076-1094.
    [11]NAGASAKA T,BRINNEL H,HALES J R S,et al.Development of 66 kV XLPE submarine cable using optical fiber as a mechanical-damage-detection-sensor[J].IEEE Transactions on Power Delivery,1995,10(4):1711-1717.
    [12]HAO Y Q,CAO Y L,YE Q,et al.On-line temperature monitoring in power transmission lines based on Brillouin optical time domain reflectometry[J].Optik-International Journal for Light and Electron Optics,2015,126(19):2180-2183.
    [13]NAKIRI T,MAEKAWA Y,TAKASHIMA H,et al.Longterm reliability testing of 500 kV DC PPLP-insulated oil-filled cable and accessories[J].IEEE Transactions on Power Delivery,1999,14(2):319-326.
    [14]金金元.高压光纤复合测温电缆的研制[J].光纤与电缆及其应用技术,2012(5):21-23.JIN Jinyuan.Development of the composite high voltage optical fiber temperature measurement cable[J].Optical Fiber and Electric Cable,2012(5):21-23.
    [15]阳林,史尊伟,黄吉超,等.基于BOTDR分布式光纤传感技术的架空线路温度检测现场试验研究[J].高电压技术,2015,41(3):925-930.YANG Lin,SHI Zunwei,HUANG Jichao,et al.Field test research on temperature detection of overhead transmission line based on BOTDR distributed fiber sensing technology[J].High Voltage Engineering,2015,41(3):925-930.
    [16]LUO J,HAO Y,YE Q,et al.Development of optical fiber sensors based on brillouin scattering and FBG for on-line monitoring in overhead transmission lines[J].Journal of Lightwave Technology,2013,31(10):1559-1565.
    [17]ZHAO L,LI Y,XU Z,et al.On-line monitoring system of110 kV submarine cable based on BOTDR[J].Sensors&Actuators A Physical,2014,216(3):28-35.
    [18]吕安强,李永倩,李静,等.利用光纤应变判断光电复合海缆锚害程度的有限元分析法[J].电工技术学报,2014,29(11):261-268.LAnqiang,LI Yongqian,LI Jing,et al.Finite element analysis for judging anchor damage degree of photoelectric composite submarine cable by optical fiber strain[J].Transactions of China Electrotechnical Society,2014,29(11):261-268.
    [19]吕安强,李永倩,李静,等.基于BOTDR的光纤复合海底电缆应变/温度监测[J].高电压技术,2014,40(2):533-539.LAnqiang,LI Yongqian,LI Jing,et al.Strain and temperature monitoring of 110 kV optical fiber composite submarine power cable based on Brillouin optical time domain reflectometer[J].High Voltage Engineering,2014,40(2):533-539.
    [20]GB/T11017.1—2014,额定电压110 kV Um=126 kV交联聚乙烯绝缘电力电缆及其附件第1部分:试验方法和要求[S].
    [21]张振鹏,赵健康,饶文彬,等.电缆分布式光纤测温系统测量结果符合性的比对试验[J].高电压技术,2012,38(6):1362-1367.ZHANG Zhenpeng,ZHAO Jiankang,RAO Wenbin,et al.Validate test for the calculation congruity of distributed temperature sensing system[J].High Voltage Engineering,2012,38(6):1362-1367.
    [22]LIU S B.Calculation of the steady-state and transient temperature rises of round cable bundles[J].IEEE Transactions on Power Delivery,2010,25(3):1229-1235.
    [23]史晓龙.光纤复合矿用电缆的设计及实现[D].大连:大连理工大学,2016.
    [24]李响,李彦,刘革明.光纤纵联保护通道故障在线诊断方法[J].电力系统保护与控制,2016,44(2):147-150.LI Xiang,LI Yan,LIU Geming.A channel fault diagnosis method for fiber pilot relay protection[J].Power System Protection and Control,2016,44(2):147-150.
    [25]李建南,张慧媛,王鲜花,等.中压电缆网接地故障的电弧建模及仿真研究[J].电力系统保护与控制,2016,44(24):105-109.LI Jiannan,ZHANG Huiyuan,WANG Xianhua,et al.Arc modeling and simulation of the ground faults of the middle voltage cable network[J].Power System Protection and Control,2016,44(24):105-109.
    [26]洪祎祺,魏丹萍,袁伟刚,等.基于对数正态分布的电缆状态评估方法研究[J].电力系统保护与控制,2018,46(2):79-84.HONG Yiqi,WEI Danping,YUAN Weigang,et al.Research on cable state evaluation method based on logarithmic normal distribution[J].Power System Protection and Control,2018,46(2):79-84.
    [27]郭思嘉,赵振东,张倩宜.基于Weibull函数分布的电力通信网光缆失效率模型[J].电力系统保护与控制,2017,45(17):92-99.GUO Sijia,ZHAO Zhendong,ZHANG Qianyi.Failure rate model for optical fiber cable in electric power communication network based on Weibull distribution function[J].Power System Protection and Control,2017,45(17):92-99.
    [28]朱淑云,谢芳娟,陈艳.电力光纤损耗及测试方法研究[J].电网与清洁能源,2016(12):34-38,46.ZHU Shuyun,XIE Fangjuan,CHEN Yan.Study of electric power optical fiber loss and its test methods[J].Advances of Power System&Hydroelectric Engineering,2016(12):34-38,46.
    [29]陈璨.架空线路中PGW融冰技术的研究[J].南方能源建设,2016,3(2):82-87.CHEN Can.Research on overhead line OPGW ice-melting technology[J].Southern Energy Construction,2016,3(2):82-87.
    [30]王玮,吕立冬,葛少伟,等.光纤传感技术及其在智能化电缆隧道的应用[J].供用电,2018,35(3):25-31.WANG Wei,LLidong,GE Shaowei,et al.Optical fiber sensing technology and its applications in intelligent cable tunnel[J].Distribution&Utilization,2018,35(3):25-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700