气候变化及人类活动对蒙古沙拐枣分布格局的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Climate Change and Human Activities on the Distribution Pattern of Calligonum mongolicum Turcz.
  • 作者:塞依丁·海米提 ; 努尔巴依·阿布都沙力克 ; 李雪萍 ; 邵华 ; 阿尔曼·解思斯 ; 阿腾古丽
  • 英文作者:Sayit Hamit;Nurbay Abdushalih;LI Xue-ping;SHAO Hua;Arman Jiesisi;Ateng Guli;College of Resources and Environmental Sciences,Xinjiang University;Key Laboratory of Oasis Ecology of Ministry of Education,Xinjiang University;Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences;
  • 关键词:蒙古沙拐枣(Calligonum ; mongolicum ; Turcz.) ; 气候变化 ; 人类活动 ; 分布格局 ; 中国
  • 英文关键词:Calligonum mongolicum Turcz.;;climate change;;human activity;;distribution pattern;;China
  • 中文刊名:GHQJ
  • 英文刊名:Arid Zone Research
  • 机构:新疆大学资源与环境科学学院;绿洲生态教育部重点实验室;中国科学院新疆生态与地理研究所;
  • 出版日期:2018-08-24 08:38
  • 出版单位:干旱区研究
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金(41561013);; 国家林业局委托项目“新疆重点保护野生植物资源调查(211-62210)”资助
  • 语种:中文;
  • 页:GHQJ201806023
  • 页数:9
  • CN:06
  • ISSN:65-1095/X
  • 分类号:203-211
摘要
蒙古沙拐枣(Calligonum mongolicum Turcz.)是中国荒漠植被的重要建群种,也是人工固沙造林的优选种。为了阐明气候变化及人类活动对其分布格局的影响,以119个蒙古沙拐枣地理分布信息和24个环境变量为基础,结合CMIP5的缩减全球模型数据,应用MaxEnt模型和Arc GIS空间分析技术,分别构建不同气候情景及人类活动干扰下的蒙古沙拐枣适宜生境预测模型,定量展示未来不同气候变化情景(RCP2. 6,RCP 4. 5,RCP 8. 5)和人类活动干扰下蒙古沙拐枣在我国的分布格局变化。结果表明:训练集的AUC值为0. 958,测试集的AUC值为0. 951,MaxEnt模型的预测结果可靠;影响蒙古沙拐枣分布的主要气候因素是降水量和海拔;人类活动干扰下蒙古沙拐枣的适生比例由13. 04%下降到9. 57%,蒙古沙拐枣的繁殖栖息与人类活动成负相关。当前气候条件下蒙古沙拐枣总适生面积比例为13. 04%,在RCP2. 6、RCP4. 5、RCP8. 5三种情景下至2050s,预测的总适生面积比例为13. 36%、13. 18%和14. 78%;至2070s,预测的总适生面积为13. 39%、12. 76%和12. 71%,适生范围及面积变化趋势各有差异,各级适生区面积及总适生面积有不同程度的增减,且在高浓度排放情景(RCP8. 5)下响应最为明显。
        Calligonum mongolicum Turcz. is an important species of vegetation in desert,and is also a preferred species for artificial sand-fixation and afforestation. This study was based on the geographical distribution of 119 geographical distribution data of C. mongolicum and 24 environmental variables. The effects of climate change and human activities on the distribution pattern of C. mongolicum were elucidated using the CMIP5 reduction global model data. The MaxEnt model and ArcGIS spatial analysis means were used to develop the models of predicting suitable habitats of C. mongolicum under different climatic conditions and human activities so as to quantitatively demonstrate the different climate change scenarios( RCP2. 6,RCP 4. 5,RCP 8. 5) and the change of distribution pattern of C. mongolicum in China under climate change. The results showed that the prediction accuracy of the model was relatively high( the AUC values of the training data set and the test data set were 0. 958 and 0. 951 respectively).The main climatic factors affecting the distribution of C. mongolicum were precipitation,topographical factors and elevation,and the disturbance of human activities made the suitable proportion of C. mongolicum decrease from13. 04% to 9. 57%. The breeding habitat of C. mongolicum was negatively correlated with human activities. Under current climatic conditions,the proportions of total suitable area of C. mongolicum was 13. 04%; in the three scenarios of RCP2. 6,RCP4. 5 and RCP8. 5,the predicted proportions of total adaptive area would be 13. 36%,13. 18% and 14. 78% up to the 2050 s,and they would be 13. 39%,12. 76% and 12. 71% up to the 2070 s. The change of scope and area of adaptation is different.
引文
[1] Parmesan C,Yohe G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature,2003,421(6 918):37-42.
    [2] Edwards P N. A Vast Machine:Computer Models,Climate Data,and the Politics of Global Warming[M]. Cambridge:MIT Press,2010.
    [3] Pounds J A,Bustamante M R,Coloma L A,et al. Widespread amphibian extinctions from epidemic disease driven by global warming[J]. Nature,2006,439(7 073):161-167.
    [4] Kozak K H,Graham C H,Wiens J J. Integrating GIS-based environmental data into evolutionary biology[J]. Trends in Ecology&Evolution,2008,23(3):141-148.
    [5]苏志豪,潘伯荣,卓立,等.未来气候变化对特有物种沙生柽柳分布格局的影响及其保护启示[J].干旱区研究,2018,35(1):150-155.[Su Zhihao,Pan Borong,Zhuo Li,et al. Impact of future climate change on distribution pattern of Tamarix taklamakanensis and its conservation revelation[J]. Arid Zone Research,2018,35(1):150-155.]
    [6]唐继洪,程云霞,罗礼智,等.基于Maxent模型的不同气候变化情景下我国草地螟越冬区预测[J].生态学报,2017,37(14):4 852-4 863.[Tang Jihong,Cheng Yunxia,Luo Lizhi,et al. Maxent-based prediction of overwintering areas of Loxostege sticticalis in China under different climate change scenarios[J]. Acta Ecologica Sinica,2017,37(14):4 852-4 863.]
    [7]高俊峰.北京东灵山地区人类活动对植物多样性分布的影响研究[D].北京:北京林业大学,2007.[Gao Junfeng. Ecological Effects of Human Disturbance on Plant Diversity Distribution in Dongling Mountain,Beijing[D]. Beijing:Beijing Forestry University,2007.]
    [8]刘娜,冯缨,管开云,等.蒙古沙拐枣(Calligonum mongolicum)的地理分布与气候关系[J].干旱区研究,2015,32(4):934-940.[Liu Na,Feng Ying,Guan Kaiyun,et al. Relation between geographic distribution of Calligonum mongolicum and climatic factors[J]. Arid Zone Research,2015,32(4):934-940.]
    [9]师玮,潘伯荣,段士民,等.蒙古沙拐枣(Calligonum mongolicum)与其相关种的果实形态差异性分析[J].中国沙漠,2011,31(1):121-128.[Shi Wei,Pan Borong,Duan Shimin,et al. Difference of fruit morphological characters of Calligonum mongolicum and related species[J]. Journal of Desert Research,2011,31(1):121-128.]
    [10]刘惠兰,马德滋.蒙古沙拐枣同化枝的解剖观察[J].植物学报,1985,3(1):45-46.[Liu Huilan,Ma Dezi. Anatomical observation of assimilating branches of Calligonum mongolicum[J].Chinese Bulletin of Botany,1985,3(1):45-46.]
    [11]樊宝丽.风沙环境下沙拐枣(Calligonum mongolicum)自然更新策略研究[D].兰州:兰州大学,2017.[Fan Baoli. Natural Regeneration Strategies of Calligonum mongolicum under Different Aeolian Environments[D]. Lanzhou:Lanzhou University,2017.]
    [12]赵小仙,李毅,苏世平,等. 6个种群蒙古沙拐枣同化枝解剖结构及与地理生态因子的关系[J].干旱区资源与环境,2015,29(2):55-60.[Zhao Xiaoxian,Li Yi,Su Shiping,et al. Anatomical structure of assimilating shoots of Calligonum mongolicum from six populations and its relationship with geo-ecological factors[J].Journal of Arid Land Resources and Environment,2015,29(2):55-60.]
    [13]赵小仙,李毅,苏世平,等. 3个地理种群蒙古沙拐枣同化枝解剖结构及抗旱性比较[J].中国沙漠,2014,34(5):1 293-1 300.[Zhao Xiaoxian,Li Yi,Su Shiping,et al. Drought resistance analysis based on anatomical structures of assimilating shoots of Calligonum mongolicum from three geographic populations[J].Journal of Desert Research,2014,34(5):1 293-1 300.]
    [14]种培芳,李毅,苏世平.干旱胁迫下不同地理种源蒙古沙拐枣(Calligomum mongolicum)光合及荧光特性比较[J].中国沙漠,2014,34(5):1 301-1 306.[Zhong Peifang,Li Yi,Su Shiping. The responses of photosynthetic and chlorophyll eluorescence to water stress in three provenances of Calligomum mongolicum[J]. Journal of Desert Research,2014,34(5):1 301-1 306.]
    [15]张东方,张琴,郭杰,等.基于Max Ent模型的当归全球生态适宜区和生态特征研究[J].生态学报,2017,37(15):5 111-5 120.[Zhang Dongfang,Zhang Qin,Guo Jie,et al. Research on the global ecological suitability and characteristics of regions with Angelica sinensis based on the Max Ent model[J]. Acta Ecologica Sinica,2017,37(15):5 111-5 120.]
    [16]刘艳,赵正武.基于最大熵模型模拟气候变化下中国两个沼泽藓类属的潜在分布[J].应用与环境生物学报,2017(5):792-799.[Liu Yan,Zhao Zhengwu. Modeling potential distributions of two wetland moss genera in China under climate change based on a maximum-entropy(Maxent)model[J]. Chinese Journal of Applied and Environmental Biology,2017(5):792-799.]
    [17]刘艳,阿提古丽·毛拉,沙毕热木·斯热义力,等.气候变化下耐旱藓类连轴藓属在新疆的分布模拟[J].西北植物学报,2017,37(9):1 881-1 887.[Liu Yan,Atigul Molla,Sabiram Esrayl,et al. Modeling potential distributions of the desiccation-tolerant moss genus Schistidium in Xinjiang under climate change[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(9):1 881-1 887.]
    [18]迈迪娜·吐尔逊.意大利苍耳在新疆的适生区分析研究[D].乌鲁木齐:新疆大学,2017.[Maidina Tursun. Studies on Suitable Geographie Distribution of Xanthium italicum Moretti in Xinjiang[D]. Urumqi:Xinjiang University,2017.]
    [19]Anderson R P,Raza A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution:Preliminary tests with montane rodents(genus Nephelomys)in Venezuela[J]. Journal of Biogeography,2010,37(7):1 378-1 393.
    [20]应凌霄,刘晔,陈绍田,等.气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟[J].生物多样性,2016,24(4):453-461.[Ying Lingxiao,Liu Ye,Chen Shaotian,et al. Simulation of the potential range of Pistacia weinmannifolia in Southwest China with climate change based on the maximumentropy(Maxent)model[J]. Biodiversity Science,2016,24(4):453-461.]
    [21]Worthington T A,Zhang T,Logue D R,et al. Landscape and flow metrics affecting the distribution of a federally-threatened fish:Improving management,model fit,and model transferability[J]. Ecological Modelling,2016,342:1-18.
    [22]王茹琳,李庆,何仕松,等.中华猕猴桃在中国潜在分布及其对气候变化响应的研究[J].中国生态农业学报,2018,26(1):27-37.[Wang Rulin,Li Qing,He Shisong,et al. Potential distribution of Actinidia chinensis in China and its predicted response to climate change[J]. Chinese Journal of Eco-Agriculture,2018,26(1):27-37.]
    [23]Yang X Q,Kushwaha S P S,Saran S,et al. Maxent modeling for predicting the potential distribution of medicinal plant,Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering,2013,51:83-87.
    [24]Phillips S J,Dudík M. Modeling of species distributions with Maxent:New extensions and a comprehensive evaluation[J]. Ecography,2008,31(2):161-175.
    [25]Padalia H,Srivastava V,Kushwaha S P S. Modeling potential invasion range of alien invasive species,Hyptis suaveolens(L.)Poit.in India:Comparison of Max Ent and GARP[J]. Ecological Informatics,2014,22:36-43.
    [26]Ha H,Heumann B W,Liesch M,et al. Modelling potential conservation easement locations using physical and socio-economic factors:A case study from south-east Michigan[J]. Applied Geography,2016,75:104-115.
    [27]Vinod P N,Chandramouli P N,Koch M. Estimation of nitrate leaching in groundwater in an agriculturally used area in the State Karnataka,India,using existing model and GIS[J]. Aquatic Procedia,2015,4:1 047-1 053.
    [28]Bjornlie D D,Thompson D J,Haroldson M A,et al. Methods to estimate distribution and range extent of grizzly bears in the Greater Yellowstone Ecosystem[J]. Wildlife Society Bulletin,2014,38(1):182-187.
    [29]赵文娟,陈林,丁克坚,等.利用MAXENT预测玉米霜霉病在中国的适生区[J].植物保护,2009,35(2):32-38.[Zhao Wenjuan,Chen Lin,Ding Kejian,et al. Prediction of potential geographic distribution areas of the maize downy mildew in China by using MAXENT[J]. Plant Protection,2009,35(2):32-38.]
    [30]段居琦,周广胜.中国双季稻种植区的气候适宜性研究[J].中国农业科学,2012,45(2):218-227.[Duan Juqi,Zhou Guangsheng. Climatic suitability of double rice planting regions in China[J]. Scientia Agricultura Sinica,2012,45(2):218-227.]
    [31]吴显坤,南程慧,汤庚国,等.气候变化对浙江楠潜在分布范围及空间格局的影响[J].南京林业大学学报(自然科学版),2016,40(6):85-91.[Wu Xiankun,Nan Chenghui,Tang Gengguo,et al. Impact of climate change on potential distribution range and spatial pattern of Phoebe chekiangensis[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2016,40(6):85-91.]
    [32]刘娜,冯缨,管开云.沙拐枣属(Calligonum L.)植物在中国的潜在分布区预测[J].干旱区资源与环境,2016,30(3):112-120.[Liu Na,Feng Ying,Guan Kaiyun. Potential distribution prediction of Calligonum L. in China[J]. Journal of Arid Land Resources and Environment,2016,30(3):112-120.]
    [33]王运生,谢丙炎,万方浩,等.相似穿孔线虫在中国的适生区预测[J].中国农业科学,2007,40(11):2 502-2 506.[Wang Yunsheng,Xie Binyan,Wan Fanghao,et al. Potential geographic distribution of radopholus similis in China[J]. Scientia Agricultura Sinica,2007,40(11):2 502-2 506.]
    [34]张颖,李君,林蔚,等.基于最大熵生态位元模型的入侵杂草春飞蓬在中国潜在分布区的预测[J].应用生态学报,2011,22(11):2 970-2 976.[Zhang Ying,Li Jun,Lin Wei,et al. Prediction of potential distribution area of Erigeron philadelphicus in China based on Max Ent model[J]. Chinese Journal of Applied Ecology,2011,22(11):2 970-2 976.]
    [35]吴建国,苌伟,吕佳佳.气温和土壤湿度变化对3种典型荒漠植物种子发芽的影响[J].环境科学研究,2009,22(3):343-350.[Wu Jianguo,Chang Wei,Lv Jiajia. The effects of change in temperature and soil moisture on the seed germination of three typical desert plants[J]. Research of Environmental Sciences,2009,22(3):343-350.]
    [36]张殷波,高晨虹,秦昊.山西翅果油树的适生区预测及其对气候变化的响应[J].应用生态学报,2018,29(4):1 156-1 162.[Zhang Yinbo,Gao Chenhong,Qin Hao. Prediction of suitable distribution of Elaeagnus mollis in Shanxi Province,China and its response to climate change[J]. Chinese Journal of Applied Ecology,2018,29(4):1 156-1 162.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700