宽禁带碳化硅单晶衬底及器件研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent development of wide bandgap semiconductor SiC substrates and device
  • 作者:肖龙飞 ; 徐现刚
  • 英文作者:Xiao Longfei;Xu Xiangang;The State Key Laboratory of Crystal Materials,Shandong University;
  • 关键词:碳化硅 ; 物理气相传输法 ; 功率器件 ; 光导开关 ; 器件失效
  • 英文关键词:silicon carbide;;physical vapor transport method;;power device;;photoconductive semiconductor switch;;device failure
  • 中文刊名:QJGY
  • 英文刊名:High Power Laser and Particle Beams
  • 机构:山东大学晶体材料国家重点实验室;
  • 出版日期:2019-04-18 15:16
  • 出版单位:强激光与粒子束
  • 年:2019
  • 期:v.31;No.262
  • 基金:国家重点研发计划项目(2016YFB0400401);; 山东大学基本科研项目(2016JC037,2018JCG01);; 山东省重点研发项目(2017CXGC0412);; 烟台“十三五”海洋经济创新发展示范项目(YHCX-ZB-L-201703)
  • 语种:中文;
  • 页:QJGY201904005
  • 页数:6
  • CN:04
  • ISSN:51-1311/O4
  • 分类号:18-23
摘要
碳化硅作为第三代宽禁带半导体的核心材料之一,相对于传统的硅和砷化镓等半导体材料,具有禁带宽度大、载流子饱和迁移速度高,热导率高、临界击穿、场强高等诸多优异的性质。基于这些优良的特性,碳化硅材料是制备高温电子器件、高频大功率器件的理想材料。近年来在碳化硅材料生长和器件制备方面取得重大进展,对碳化硅材料特性和生长方法进行回顾,并研究了碳化硅光导开关偏压、触发能量、导通电流之间的关系,以及开关失效情况下电极表面的损伤情况。
        As a key representative material for the third-generation wide bandgap semiconductors,silicon carbide(SiC)is a promising wide band gap semiconductor material and can be used for the fabrication of highpower and high-frequency electronics,due to its superior physical properties,such as high thermal conductivity,wide band gap and high critical breakdown field.In recent years,bulk growth of SiC single crystals and the fabrication of devices have made significant progress.The paper introduces the growth techniques for SiC bulk and presents the relationship between the on-state resistance and voltage or laser energy.It also analyses the failure of devices.
引文
[1]Powell A R,Rowland L B.SiC materials—progress,status,and potential roadblocks[J].Proceedings of the IEEE,2002,90(6):942-955.
    [2]Neudeck P G,Okojie R S,Chen L Y.High temperature electronics—a role for wide bandgap semiconductors[J].Proc of the IEEE,2006,90(6):1065-1076.
    [3]Hudgins J.Wide and narrow bandgap semiconductors for power electronics:A new valuation[J].Journal of Electronic Material,2003,32(6):471-477.
    [4]Morkoc H,Strite S,Gao G B,et al.Large-band-gap SiC,III-V nitride,and II-VI ZnSe-based semiconductor device technologies[J].Journal of Applied Physics,1994,76(3):1363-1398.
    [5]郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术[M].北京:科学出版社,2000:116-119.(Hao Yue,Peng Jun,Yang Yintang.The technology of silicon carbide broadband gap semiconductor.Beijing:Science Press,2000:116–119)
    [6]Glass R C,Henshall D,Tsvetkov V F,et al.SiC-seeded crystal growth[J].MRS Bulletin,1997,22(3):30-35.
    [7]Yashiro N,Kusunoki K,Kamei K,et al.Growth of SiC single crystal from Si-C-(Co,Fe)ternary solution[C]//Materials science forum.Trans Tech Publications,2006,527:115-118.
    [8]Kimoto T,Cooper J A.Fundamentals of silicon carbide technology:growth,characterization,devices and applications[M].John Wiley &Sons,2014.
    [9]Danno K,Saitoh H,Seki A,et al.High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt[J].Materials Science Forum,2010,645/648:13-16.
    [10]彭燕,陈秀芳,彭娟,等.高质量半绝缘150mm 4H-SiC单晶生长研究[J].人工晶体学报,2016,45(5):1145-1152.(Peng Yan,Chen Xiufang,Peng Juan,et al.Study on the growth of high quality semi-insulating150mm 4H-SiC single crystal.Journal of Synthetic Crystals,2016,45(5):1145-1152)
    [11]Bluhm H.Pulsed power systems[M].Berlin:Springer-Verlag,2006.
    [12]Cho P S,Goldhar J,Lee C H,et al.Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices[J].Journal of Applied Physics,1995,77(4):1591-1599.
    [13]Sheng S,Spencer M G,Tang X,et al.Polycrystalline cubic silicon carbide photoconductive switch[J].IEEE Electron Device Lett,1997,18(8):372-374.
    [14]Dogan S,Teke A,Huang D,et al.4H-SiC photoconductive switching devices for use in high-power applications[J].Applied Physics Letters,2003,82(18):3107-3109.
    [15]Zhu K,Dogan S,Moon Y T,et al.Effect of n+-GaN subcontact layer on 4H-SiC high-power photoconductive switch[J].Applied Physics Letters,2005,86:261108.
    [16]Mauch D,Sullivan W,Bullick A,et al.High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms[J].IEEE Trans Plasma Science,2015,43(6):2021-2031.
    [17]Tiskumara R,Joshi R P,Mauch D,et al.Analysis of high field effects on the steady-state current-voltage response of semi-insulating 4HSiC for photoconductive switch applications[J].Journal of Applied Physics,2015,118:095701.
    [18]Chowdhury A R,Mauch D,Joshi R P,et al.Contact extensions over a high-dielectric layer for surface field mitigation in high power 4HSiC photoconductive switches[J].IEEE Trans Electron Devices,2016,63(8):3171-3176.
    [19]刘金锋,袁建强,刘宏伟,等.影响碳化硅光导开关最小导通电阻的因素[J].强激光与粒子束,2012,24(3):607-611.(Liu Jinfeng,Yuan Jianqiang,Liu Hongwei,et al.Factors affecting minimum on-state resistance of SiC photoconductive semiconductor switch.High Power Laser and Particle Beams,2012,24(3):607-611)
    [20]周天宇,刘学超,代冲冲,等.V掺杂6H-SiC光导开关制备与性能研究[J].强激光与粒子束,2014,26:045043.(Zhou Tianyu,Liu Xuechao,Dai Chongchong,et al.Fabrication and properties of V-doped semi-insulating 6H-SiC photoconductive semiconductor switch.High Power Laser and Particle Beams,2014,26:045043)
    [21]Cao Penghui,Huang Wei,Guo Hui,et al.Performance of a vertical 4H-SiC photoconductive switch with AZO transparent conductive window and silver mirror reflector[J].IEEE Trans Electron Devices,2018,65(5):2047-2051.
    [22]Xiao Longfei,Yang Xianglong,Duan Peng,et al.Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J].Applied Optics,2018,57(11):2804-2808.
    [23]Luan Chongbiao,Li Boting,Zhao Juan,et al.A new phenomenon in semi-insulating 4H-SiC photoconductive semiconductor switches[J].IEEE Trans Electron Devices,2018,65(1):172-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700