TiO_2微波碳热合成纳米TiC及其转化过程研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of TiC Nano-particles and Transformation of TiO_2 via Microwave Carbothermic Reduction Route
  • 作者:袁振侠 ; 陆有军 ; 陈炜晔 ; 吴澜尔
  • 英文作者:YUAN Zhen-Xia;LU You-Jun;CHEN Wei-Ye;WU Lan-Er;School of Material Science and Engineering, Beifang University of Nationalities;Key Laboratory of Powder Materials & Special Ceramics, Beifang University of Nationalities;
  • 关键词:纳米TiC ; 微波合成 ; 物相分析 ; 扩散机制
  • 英文关键词:nano-TiC;;microwave synthesis;;phase analysis;;diffusion mechanism
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:北方民族大学材料科学与工程学院;北方民族大学粉体材料与特种陶瓷省部共建重点实验室;
  • 出版日期:2017-08-29 15:54
  • 出版单位:无机材料学报
  • 年:2017
  • 期:v.32;No.215
  • 基金:国家自然科学基金(51662002);; 国家民委科研项目(14BFZ006);; 2015年宁夏回族自治区科技创新领军人才项目~~
  • 语种:中文;
  • 页:WGCL201709016
  • 页数:6
  • CN:09
  • ISSN:31-1363/TQ
  • 分类号:97-102
摘要
以TiO_2和纳米炭黑为原料,机械干法混合后,在Ar气氛下微波碳热合成纳米TiC。合成产物通过XRD和SEM进行表征,研究了TiO_2粒径、反应温度、保温时间对微波碳热合成纳米TiC物相、显微形貌和TiO_2自身转化率的影响。实验结果表明,微波碳热还原合成纳米TiC经1300℃保温40 min和1400℃保温30 min可使TiO_2充分反应,且粒径为40 nm的TiO_2的转化率可达到98.2%,合成的TiC粒度分布均匀,平均粒径约小于100 nm。此外,根据固相扩散机制对不同反应温度下两种粒径TiO_2转化率随时间的变化进行了Avrami方程拟合,并绘制了两种粒径TiO_2的转化曲线,为TiO_2与纳米炭黑微波合成纳米TiC提供理论参考。
        TiC powders were prepared via microwave carbothermic reduction in Ar with TiO_2 and nano-carbon black as starting materials. Effects of TiO_2 particle sizes, temperature and holding time on phase compositions, particle morphologies and TiC yields in the reaction products were investigated by means of X-ray diffraction(XRD) and scanning electron microscopy(SEM). Avrami equation was fitted to the change of TiO_2 conversion with time at different temperatures. Results show that TiO_2 powders with average diameters ranging from 40 to 400 nm were fully reduced at 1300-1400℃ for 30-40 min with TiC yield as high as 98.2%. TiC powder with uniform particle size less than 100 nm was obtained in case of reaction at 1400℃ for 30 min by using 40 nm TiO_2 as starting material. Transformation curves of TiO_2 were prepared for the synthesis of nano-TiC by microwave carbothermic reduction.
引文
[1]MAO J,LI S,ZHANG Y,et al.The stability of Ti C surfaces in the environment with various carbon chemical potential and surface defects.Applied Surface Science,2016,386:202–209.
    [2]Li Y L,TAKAMASA I.Incongruent vaporization of titanium carbide in thermal plasma.Materials Science&Engineering A,2003,345(1/2):301–308.
    [3]XUE J X,LIU J X,ZHANG G J,et al.Improvement in mechanical/physical properties of Ti C-based ceramics sintered at 1500℃for inert matrix fuels.Scripta Materialia,2016,114(3):5–8.
    [4]DING L,XIANG D P,PAN Y L,et al.In situ synthesis of Ti C cermet by spark plasma reaction sintering.Journal of Alloys&Compounds,2015,661:136–140.
    [5]ACHARYA S,DEBATA M,ACHARYA T S,et al.Influence of nickel boride addition on sintering behaviour and mechanical properties of Ti C–Ni based cermets.Journal of Alloys&Compounds,2016,685:905–912.
    [6]WANG Z,LIN T,HE X,et al.Fabrication and properties of the Ti C reinforced high-strength steel matrix composite.International Journal of Refractory Metals&Hard Materials,2016,58:14–21.
    [7]MIAO S,XIE Z M,ZHANG T,et al.Mechanical properties and thermal stability of rolled W-0.5wt%Ti C alloys.Materials Science&Engineering A,2016,671:87–95.
    [8]YOSHIOKA S,BOATEMAA L,ZWAAG S V D,et al.On the use of Ti C as high-temperature healing particles in alumina based composites.Journal of the European Ceramic Society,2016,36(16):4155–4162.
    [9]LU JUN,ZHENG ZHI-XIANG,DING HOU-FU,et al.Surface crack-healing of Al2O3 ceramic-matrix composites.Journal of Inorganic Materials,2001,16(3):535–540.
    [10]OLáH N,FOGARASSY Z,SULYOK A,et al.Ceramic Ti C/a:C protective nanocomposite coatings:Structure and composition versus mechanical properties and tribology.Ceramics International,2016,42(10):12215–12220.
    [11]SAHOO C K,SONI L,MASANTA M.Evaluation of microstructure and mechanical properties of Ti C/Ti C-steel composite coating produced by gas tungsten arc(GTA)coating process.Surface&Coatings Technology,2016,307:17–27.
    [12]ZHAO X,ZHUO Y,LIU S,et al.Investigation on WC/Ti C interface relationship in wear-resistant coating by first-principles.Surface&Coatings Technology,2016,305:200–207.
    [13]SHAHBAHRAMI B,HAKAMI M,BASTAMI H,et al.Synthesis of titanium carbide powder by carbothermic reduction method.Material Research Innovations,2010,14(1):87–88.
    [14]REN R M,YANG Z G,SHAW L L.Synthesis of nanostructured Ti C via carbothermic reduction enhanced by mechanical activation.Scripta Materialia,1998,38(5):735–741.
    [15]KOC R,FOLMER J S.Synthesis of submicrometer titanium carbide powders.Journal of the American Ceramic Society,1997,80(4):952–956.
    [16]BENOIT C,ELLEN H,NIKHIL K,et al.Ti C nucleation/growth processes during SHS reactions.Powder Technology,2005,157(1):92–99.
    [17]YU YIN-HU,WANG TAO,ZHANG HONG-MIN,et al.Low temperature combustion synthesis of Ti C powder induced by PTFE.Journal of Inorganic Materials,2015,30(3):272–276.
    [18]CETINKAYA S,EROGLU S.Chemical vapor deposition of carbon on particulate Ti O2,from CH4,and subsequent carbothermal reduction for the synthesis of nanocrystalline Ti C powders.Journal of the European Ceramic Society,2011,31(5):869–876.
    [19]PREISS H,BERGER L M,SCHULTZE D.Studies on the carbothermal preparation of titanium carbide from different gel precursors.Journal of the European Ceramic Society,1999,19(17):195–206.
    [20]LEE D W,ALEXANDROVSKII S,KIM B K.Mg-thermal reduction of Ti Cl4+Cx Cl4,solution for producing ultrafine titanium car-bide.Materials Chemistry&Physics,2004,88(l):23–26.
    [21]CLICHE G,DALLAIRE S.Synthesis of Ti C and(Ti,W)C in solvent metals.Material Science&Engineering A,1991,148(2):319–328.
    [22]RAHAEI M B,RAD R Y,KAZEMZADEH A,et al.Mechanochemical synthesis of nano Ti C powder by mechanical milling of titanium and graphite powders.Powder Technology,2012,217(2):369–376.
    [23]MOHAPATRA S,MISHRA D K,SINGH S K.Microscopic and spectroscopic analyses of Ti C powder synthesized by thermal plasma technique.Powder Technology,2013,237(176):41–45.
    [24]GUNNEWIEK R F K,SOUTO P M,KIMINAMI R H G A.Microwave-assisted synthesis of Ti C by carbothermal reduction.Processing and Properties of Advanced Ceramics and Composites IV:Ceramic Transactions,2012,234:93.
    [25]AHMAD I,DALTON R,CLARK D.Unique application of microwave energy to the processing of ceramic materials.Microwave Power and Electromagnetic Energy,1991,26(3):128–138.
    [26]HASSINE N A,BINNER J G P,CROSS T E.Synthesis of refractory metal carbide powders via microwave carbothermal reduction.International Journal of Refractory Metals&Hard Materials,1995,13(6):353–358.
    [27]LIU YANG,ZENG LING-KE,HU XIAO-LI.Thermodynamic studies on microwave synthesis of nano-Ti C powders.China Ceramic Industry,2003,10(3):20–23.
    [28]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理.北京:科学出版社,2006:104.
    [29]KARAMANOV A,AVRAMOV I,ARRIZZA L,et al.Variation of Avrami parameter during non-isothermal surface crystallization of glass powders with different sizes.Journal of Non-Crystalline Solids,2012,358(12/13):1486–1490.
    [30]CELIK F A,KAZANC S.Crystallization analysis and determination of Avrami exponents of Cu Al Ni alloy by molecular dynamics simulation.Physica B Condensed Matter,2013,409(1):63–70.
    [31]KARMAKAR P,SUBUDHI A K,BISWAS K,et al.Crystallization kinetics analysis of Ba F2,and Ba Gd F5,nanocrystals precipitated from oxyfluoride glass systems:a comparative study.Themochimica Acta,2015,610:1–9.
    [32]ARSHAD M A,MAAROUFI A K.Relationship between JohnsonMehl-Avrami and?esták-Berggren models in the kinetics of crys-tallization in amorphous materials.Journal of Non-Crystalline Solids,2015,413(6/7):53–58.
    [33]ZHOU YI-MING,XIN XIN-QUAN.Synthetic chemistry for solid state reaction at low-heating temperatures.Chinese Journal Of Inorganic Chemistry,1999,15(3):273–292.
    [34]YUAN ZHENG-XIA,LU YOU-JUN,WU LAN-ER.Synthesis Si C powder from silicon and carbon black via microwave heating route.Advanced Ceramics,2016,37(3):190–197.
    [35]AFIR A,ACHOUR M,SAOULA N.X-ray diffraction study of Ti-O-C system at high temperature and in a continuous vacuum.Journal of Alloys&Compounds,1999,288(1/2):124–140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700