煤矿区水域煤粉浓度遥感反演模型实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental research on remote sensing inversion model of pulverized-coal concentration in waters in mining areas
  • 作者:胡鑫 ; 周鹏 ; 王科 ; 周雪雯 ; 李秋霞 ; 刘善军
  • 英文作者:Hu Xin;Zhou Peng;Wang Ke;Zhou Xuewen;Li Qiuxia;Liu Shanjun;School of Resource and Civil Engineering,Northeastern University;
  • 关键词:煤矿 ; 水质监测 ; 悬浮物 ; 可见光-近红外光谱 ; 遥感模型
  • 英文关键词:coal mine;;water quality surveillance;;suspended substance;;visible and near-infrared spectrum;;remote sensing model
  • 中文刊名:KSCL
  • 英文刊名:Mine Surveying
  • 机构:东北大学资源与土木工程学院;
  • 出版日期:2017-06-15
  • 出版单位:矿山测量
  • 年:2017
  • 期:v.45;No.189
  • 基金:国家级大学生创新创业训练计划资助项目(201510145079)
  • 语种:中文;
  • 页:KSCL201703027
  • 页数:5
  • CN:03
  • ISSN:13-1096/TD
  • 分类号:105-109
摘要
遥感是目前水质环境监测的重要方法,其中水体悬浮物的监测主要针对泥沙成分进行,而针对矿区水域煤粉含量的监测研究较少。文中利用便携式光谱仪测试了不同煤粉浓度水样的可见光-近红外光谱,分析了光谱特征与煤粉浓度之间的关系,发现煤粉含量对水的光谱反射率有很大影响,即随着煤粉浓度的增大,水的光谱反射率逐渐减小;不同煤粉浓度的水样均在740 nm波段处存在光谱吸收特征,且吸收深度与煤粉含量存在密切关系。基于此,建立了光谱吸收指数(SAI)与煤粉浓度之间的线性模型,以此作为水体煤粉浓度的遥感反演模型。模型验证结果表明,煤粉浓度在200~700 mg/L,模型具有较高的反演精度,其相对误差平均为6.3%。研究结果为煤矿区水质监测提供了新的思路。
        Recently,remote sensing had become a significant method to monitor the quality of water,monitoring of water suspension was conducted aiming at the component of the sediment,and there was little research on the monitoring of pulverized coal content in the mine area. In the paper,visible and near-infrared spectrums of various pulverized coal concentration water samples were tested using the portable spectrometer,the relationships between the spectral characteristics and the pulverized-coal concentration were analyzed,it was found that the pulverized coal content had a great influence on the spectral reflectance of water. With the pulverized-coal concentration increasing,the spectral reflectance of samples was gradually reduced,while the water samples with different pulverized coal concentrations had the spectral absorption characteristics at 740 nm,and the depth of absorption and coal content was closely related. On the basis of the above analyses,a linear model between the spectral absorption index( SAI)and the pulverized coal concentration was established as a remote-sensing inversion model for the content of pulverized coal in water body. Model validation results showed that the model had high inversion accuracy when the pulverized coal concentration was 200-700 mg/L,and the average relative error was 6. 3%. The results provided a new idea for the water quality monitoring in coal mine area.
引文
[1]李云梅,黄家柱,陆皖宁,等.基于分析模型的太湖悬浮物浓度遥感监测[J].海洋与湖沼,2006,37(2):171-177.
    [2]Doerffer R,Fischer J.Concentrations of chlorophyll,suspended matter,and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods[J].Journal of Geophysical Research:O-ceans,1994,99(C4):7457-7466.
    [3]Mao Z,Chen J,Pan D,et al.A regional remote sensing algorithm for total suspended matter in the East China Sea[J].Remote Sensing of Environment,2012,124:819-831.
    [4]刘忠华,李云梅,檀静,等.太湖,巢湖水体总悬浮物浓度半分析反演模型构建及其适用性评价[J].环境科学,2012,33(9):3000-3008.
    [5]Siswanto E,Tang J,Yamaguchi H,et al.Empirical ocean-color algorithms to retrieve chlorophyll-a,total suspended matter,and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas[J].Journal of oceanography,2011,67(5):627-650.
    [6]张毅博,张运琳,查永,等.基于Landsat 8影像估算新安江水库总悬浮物浓度[J].环境科学,2015,36(1):56-63.
    [7]光洁,韦玉春,黄家柱,等.分季节的太湖悬浮物遥感估测模型研究[J].湖泊科学,2007,19(3):241-249.
    [8]Colleen M.Long,Tamlin M.Pavelsky.Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment[J].Remote Sensing of Environment,2013(15),129:197-209.
    [9]BMichelle Elizabeth Newcomer,Amber Jean Michael Kuss,et al.Estuarine sediment deposition during wetland restoration:a GIS and remote sensing modelling approach[J].Geocarto International,2014,29(4):451-467.
    [10]Tan Dejun,Jian Ji,Xie Hongbin,et al.Spectrum Measurement and Analysis on Water Pollution in Wansheng Coal-mines District in Chongqing City[C].Proceedings of 2012 International Conference on Earth Science and Remote Sensing.
    [11]杨宏光.矿井水水质特征及利用途径[J].煤炭环境保护,1992,6(4):34-37.
    [12]莫樊,郁钟铭,吴桂义,等.煤矿矿井水资源化及综合利用[J].煤炭工程,2009(6):103-105.
    [13]王晋年,郑兰芬,童庆禧.成像光谱图图像光谱吸收鉴别模型与矿物填图研究[J].环境遥感1996,11(1):20-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700