基于Landsat 8影像估算新安江水库总悬浮物浓度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Remote Sensing Estimation of Total Suspended Matter Concentration in Xin'anjiang Reservoir Using Landsat 8 Data
  • 作者:张毅博 ; 张运林 ; 査勇 ; 施坤 ; 周永强 ; 王明珠
  • 英文作者:ZHANG Yi-bo;ZHANG Yun-lin;ZHA Yong;SHI Kun;ZHOU Yong-qiang;WANG Ming-zhu;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Key Laboratory of Virtual Geographical Environment, Ministry of Education, Nanjing Normal University;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:Landsat ; 8 ; 新安江水库 ; 总悬浮物 ; 经验方法 ; 遥感估算
  • 英文关键词:Landsat 8;;Xin'anjiang Reservoir;;total suspended matters;;empirical method;;remote sensing estimation
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:南京师范大学虚拟地理环境教育部重点实验室,江苏省地理信息资源开发与利用协同创新中心;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;中国科学院大学;
  • 出版日期:2014-12-22 16:05
  • 出版单位:环境科学
  • 年:2015
  • 期:v.36
  • 基金:国家自然科学基金项目(41325001);; 江苏省杰出青年基金项目(BK2012050);; 中国科学院南京地理与湖泊研究所“一三五”重点布局项目(NIGLAS2012135003);; 江苏省自然科学基金项目(BK20141515)
  • 语种:中文;
  • 页:HJKZ201501008
  • 页数:8
  • CN:01
  • ISSN:11-1895/X
  • 分类号:58-65
摘要
总悬浮物(total suspended matter,TSM)直接决定着水下光场分布,进而影响水体的初级生产力,其浓度也是水质和水环境评价的重要参数之一.本研究构建了基于Landsat 8影像数据的较为清洁的新安江水库TSM的遥感估算模型,并给出了该水体TSM浓度的空间分布特征.结果表明,对该水体TSM浓度较为敏感波段为Landsat 8第二、三和八波段,线性相关的决定系数分别为0.37、0.51和0.42.然而,以上任何一个波段都无法单独用于准确地提取该区TSM浓度,而利用以上3个波段构建的多元回归模型能够给出较为准确的估算结果,模型决定系数为0.92,平均相对误差为11%,均方根误差为0.16mg·L-1.新安江水库TSM浓度整体较低,变化范围为0.04~24.54 mg·L-1,平均浓度为2.19 mg·L-1.高浓度部分位于湖的边缘区以及一些湖湾枝杈,如:枫树岭水域、汾口水域、威坪水域、安阳水域、大墅水域、临岐水域等,主要是受入湖河流以及邻近水域采砂活动的影响.因此研究认为利用Landsat 8数据的3个波段,采用多元回归模型能够较好地估算较清洁水体的TSM浓度.
        Total suspended matter( TSM) plays an important role in determining the underwater light climate,which then affects the lake primary production. Therefore,TSM concentration is an important parameter for lake water quality and water environment assessment. This study developed an empirical estimation model and presented the spatial distribution of TSM concentration for the relatively clear Xin'anjiang Reservoir based on the in situ ground data and the matching Landsat 8 data. The results showed that Band2,Band 3 and Band 8 of Landsat 8 data were the sensitive bands of TSM estimation in Xin'anjiang Reservoir with the linear determination coefficients of 0. 37,0. 51 and 0. 42,respectively. However,the linear models using Band 2,Band 3 and Band 8 could not give a reasonable and satisfying estimation accuracy. Therefore,a three-band combination estimation model of TSM concentration using Band 2,Band 3 and Band 8 was calibrated and validated to improve the TSM concentration estimation accuracy. The determination coefficient,mean relative error and root mean square error were 0. 92,11% and 0. 16 mg·L-1,respectively for the three-band combination model. Overall,the TSM concentration was relatively low in Xin'anjiang Reservoir,ranging from 0. 04 to 24. 54mg·L-1with a mean value of 2. 19 mg·L-1. Higher TSM concentrations were distributed in the nearshore zones and small bays such as Fengshuling bay,Fenkou bay,Weiping bay,Anyang bay,Dashu bay and Linqi bay,which were affected by input rivers rainfall and human dredging activity. Therefore,this study demonstrated that the combination of three bands using Landsat 8 data could be used to estimate the TSM concentration in the relatively clear Xin'anjiang Reservoir.
引文
[1]Cole B E,Cloern J E.An empirical model for estimating phytoplankton productivity in estuaries[J].Marine Ecology Progress Series,1987,36(1):299-305.
    [2]May C L,Koseff J R,Lucas L V,et al.Effects of spatial and temporal variability of turbidity on phytoplankton blooms[J].Marine Ecology Progress Series,2003,254(1):111-128.
    [3]Zhang Y L,Wu Z X,Liu M L,et al.Thermal structure and response to long-term climatic changes in Lake Qiandaohu,a deep subtropical reservoir in China[J].Limnology and Oceanography,2014,59(4):1193-1202.
    [4]Wang Y H,Deng Z D,Ma R H.Suspended solids concentration estimation in Lake Taihu using field spectra and MODIS data[J].Acta Scientiae Circumstantiae,2007,27(3):509-515.
    [5]Miller R L,Mc Kee B A.Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters[J].Remote sensing of Environment,2004,93(1-2):259-266.
    [6]Doerffer R,Fischer J.Concentrations of chlorophyll,suspended matter,and gelbstoff in caseⅡwaters derived from satellite coastal zone color scanner data with inverse modeling methods[J].Journal of Geophysical Research:Oceans(1978-2012),1994,99(C4):7457-7466.
    [7]Chen K S,Kao W L,Tzeng Y C.Retrieval of surface parameters using dynamic learning neural network[J].International Journal of Remote Sensing,1995,16(5):801-809.
    [8]李云梅,黄家柱,陆皖宁,等.基于分析模型的太湖悬浮物浓度遥感监测[J].海洋与湖沼,2006,37(2):171-177.
    [9]Zhang Y L,Liu M L,Wang X,et al.Bio-optical properties and estimation of the optically active substances in Lake Tianmuhu in summer[J].International Journal of Remote Sensing,2009,30(11):2837-2857.
    [10]Zhang M W,Tang J W,Dong Q,et al.Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery[J].Remote Sensing of Environment,2010,114(2):392-403.
    [11]Mao Z H,Chen J Y,Pan D L,et al.A regional remote sensing algorithm for total suspended matter in the East China Sea[J].Remote Sensing of Environment,2012,124(1):819-831.
    [12]施坤,李云梅,刘忠华,等.基于半分析方法的内陆湖泊水体总悬浮物浓度遥感估算研究[J].环境科学,2011,32(6):1571-1580.
    [13]刘忠华,李云梅,檀静,等.太湖、巢湖水体总悬浮物浓度半分析反演模型构建及其适用性评价[J].环境科学,2012,33(9):3001-3008.
    [14]Xi H Y,Zhang Y Z.Total suspended matter observation in the Pearl River estuary from in situ and MERIS data[J].Environmental Monitoring and Assessment,2011,177(1-4):563-574.
    [15]Siswanto E,Tang J W,Yamaguchi H,et al.Empirical oceancolor algorithms to retrieve chlorophyll-a,total suspended matter,and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas[J].Journal of Oceanography,2011,67(5):627-650.
    [16]吕恒,魏小鸿.太湖悬浮物浓度的MODIS数据定量反演提取[J].地球信息科学,2008,10(2):151-155.
    [17]李渊,李云梅,施坤,等.基于光谱分类的总悬浮物浓度估算[J].光谱学与光谱分析,2013,33(10):2721-2726.
    [18]唐军武,田国良,汪小勇,等.水体光谱测量与分析I:水面以上测量法[J].遥感学报,2004,8(1):37-44.
    [19]马荣华,戴锦芳.结合Landsat ETM与实测光谱估测太湖叶绿素及悬浮物含量[J].湖泊科学,2005,17(2):97-103.
    [20]邬明权,韩松,赵永清,等.应用Landsat TM影像估算渤海叶绿素a和总悬浮物浓度[J].遥感信息,2012,27(4):91-95.
    [21]温小乐,徐涵秋.基于多源同步数据的闽江下游悬浮物定量遥感[J].环境科学,2008,29(9):2441-2447.
    [22]管义国,王心源,吉文帅.巢湖水体悬浮物的遥感分析[J].遥感信息,2007,(5):39-43.
    [23]Dekker A G,Vos R J,Peters S W M.Comparison of remote sensing data,model results and in situ data for total suspended matter(TSM)in the southern Frisian lakes[J].Science of the Total Environment,2001,268(1-3):197-214.
    [24]韩伟明,胡水景,金卫,等.千岛湖水环境质量调查与保护对策[J].湖泊科学,1996,8(4):337-344.
    [25]韩晓霞,朱广伟,吴志旭,等.新安江水库(千岛湖)水质时空变化特征及保护策略[J].湖泊科学,2013,25(6):836-845.
    [26]Zhang Y L,Shi K,Liu X H,et al.Lake topography and wind waves determining seasonal-spatial dynamics of total suspended matter in turbid lake Taihu,China:assessment using long-term high-resolution MERIS Data[J].Plo S One,2014,9(5):e98055.
    [27]Vermote E F,TanréD,Deuze J L,et al.Second simulation of the satellite signal in the solar spectrum,6S:An overview[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):675-686.
    [28]Burns P,Nolin A.Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca,Peru from 1987 to 2010[J].Remote Sensing of Environment,2014,140(1):165-178.
    [29]Zhao W J,Tamura M,Takahashi H.Atmospheric and spectral corrections for estimating surface albedo from satellite data using6S code[J].Remote Sensing of Environment,2001,76(2):202-212.
    [30]Baban S M J.Detecting water quality parameters in the Norfolk Broads,U.K.,using Landsat imagery[J].International Journal of Remote Sensing,1993,14(7):1247-1267.
    [31]许珺,方红亮,傅肃性,等.运用SPOT数据进行河流水体悬浮固体浓度的研究——以台湾淡水河为例[J].遥感技术与应用,1999,14(4):17-22.
    [32]Baban S M J.The use of Landsat imagery to map fluvial sediment discharge into coastal waters[J].Marine Geology,1995,123(3-4):263-270.
    [33]Eleveld M A,Pasterkamp R,van der Woerd H J,et al.Remotely sensed seasonality in the spatial distribution of seasurface suspended particulate matter in the southern North Sea[J].Estuarine,Coastal and Shelf Science,2008,80(1):103-113.
    [34]Woodruff D L,Stumpf R P,Scope J A,et al.Remote estimation of water clarity in optically complex estuarine waters[J].Remote Sensing of Environment,1999,68(1):41-52.
    [35]Zhang Y Z,Pulliainen J,Koponen S,et al.Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data[J].Remote Sensing of Environment,2002,81(2-3):327-336.
    [36]Duan H T,Ma R H,Zhang Y Z,et al.Remote-sensing assessment of regional inland lake water clarity in northeast China[J].Limnology,2009,10(2):135-141.
    [37]Williams P C.Implementation of near-infrared technology[A].In:Williams P,Norris K(Eds.).Near-infrared technology in the agricultural and food industries[M].2nd ed.USA:American Association of Cereal Chemists,Inc.,2001.
    [38]Doxaran D,Froidefond J M,Lavender S,et al.Spectral signature of highly turbid waters:Application with SPOT data to quantify suspended particulate matter concentrations[J].Remote Sensing of Environment,2002,81(1):149-161.
    [39]Han Z,Jin Y Q,Yun C X.Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data[J].International Journal of Remote Sensing,2006,27(19):4329-4336.
    [40]Tassan S.An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters[J].International Journal of Remote Sensing,1993,14(6):1221-1229.
    [41]淳安县公共资源交易中心.淳安县千岛湖湖区薜家源码头以上枫树岭等水域采砂权拍卖公告[EB/OL].http://www.cajyzx.org.cn,2009-08-24.
    [42]邬国锋,崔丽娟.基于遥感技术的鄱阳湖采砂对水体透明度的影响[J].生态学报,2008,28(12):6113-6120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700