微囊化Penicillium purpurogenum Li-3细胞的制备及其催化性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Catalytic Properties of Microencapsulated Penicillium purpurogenum Li-3
  • 作者:黄晓林 ; 曹红 ; 欧阳巧凤 ; 沈瑞麟 ; 李春 ; 吴廷华
  • 英文作者:HUANG Xiao-lin;CAO Hong;OUYANG Qiao-feng;SHEN Rui-lin;LI Chun;WU Ting-hua;Institute of Physical Chemistry,Zhejiang Normal University;College of Biological Chemical Sciences and Engineering,Jiaxing University;School of Chemistry and Chemical Engineering,Shihezi University;School of Life Science and Technology,Beijing Institute of Technology;
  • 关键词:微囊化 ; 产紫青霉细胞 ; 甘草酸 ; 单葡萄糖醛酸基甘草次酸
  • 英文关键词:microencapsulate;;Penicillium purpurogenum Li-3 cells;;glycyrrhizic acid;;glycyrrhetic acid 3-O-mono-β-D glucuronide
  • 中文刊名:SPKJ
  • 英文刊名:Science and Technology of Food Industry
  • 机构:浙江师范大学物理化学研究所;嘉兴学院生物与化学工程学院;石河子大学化学化工学院;北京理工大学生命科学与技术学院;
  • 出版日期:2018-05-02 14:07
  • 出版单位:食品工业科技
  • 年:2018
  • 期:v.39;No.410
  • 基金:国家自然科学基金资助项目(21266029);; 浙江省自然科学基金(LY17B060011)
  • 语种:中文;
  • 页:SPKJ201818028
  • 页数:7
  • CN:18
  • ISSN:11-1759/TS
  • 分类号:162-167+175
摘要
采用海藻酸钠(SA)-羧甲基纤维素钠(CMC)液芯微胶囊技术制备微囊化产紫青霉细胞(Penicillium purpurogenum Li-3),研究其制备条件及其催化性能,考察不同因素对微囊化细胞直径、机械强度、破损率、催化活性的影响。结果表明,在羧甲基纤维素钠的浓度为1.4%、海藻酸钠的浓度为1.2%、Ca Cl2的浓度为1.0%、固化过程Ca Cl2浓度为0.5%及加菌量为3.0%的条件下,制得的微囊化细胞在重复利用9次后,相对活性仍达到56.9%,显示出较好的机械强度和操作稳定性。本文为高效生物转化甘草酸合成单葡萄糖醛酸基甘草次酸(GAMG)提供了技术支持。
        The microencapsulated Penicillium purpurogenum Li-3 cells were prepared with the entrapment technique of liquidcore microcapsules from sodium alginate( SA) and sodium carboxymethyl cellulose( CMC) in this paper. The preparation conditions and catalytic performances of the microencapsulated cells were studied,and the effects of different factors on the diameter,mechanical strength,breakage rate and catalytic performance of microencapsulated cells were investigated.The optimal conditions of concentration of sodium carboxymethyl cellulose 1.4%,sodium alginate 1.2%,the Ca Cl21.0%,the Ca Cl20.5% in solidification process,and the amount of bacteria 3% were obtained for microencapsulated cells.And after continuous use for 9 batch cycles,56.9% residual activity of the microencapsulated cells remained.The results suggested that the microencapsulated cells possessed comparatively high mechanical strength and stability. This paper provides technical support for high efficiency bioconversion of glycyrrhizin to glycyrrhetinic acid monoglyceric acid( GAMG).
引文
[1]Gao X,Wang W,Wei S,et al.Review of pharmacological effects of Glycyrrhiza Radix and its bioactive compounds[J].China Journal of Chinese Materia Medica,2009,34(21):2695-2700.
    [2]Huang S,Feng X,Li C.Enhanced production ofβ-glucuronidase from Penicillium purpurogenum Li-3 by optimizing fermentation and downstream processes[J].Frontiers of Chemical Science and Engineering,2015,9(4):501-510.
    [3]Isbrucker R A,Burdock G A.Risk and safety assessment on the consumption of Licorice root(Glycyrrhiza sp.),its extract and powder as a food ingredient,with emphasis on the pharmacology and toxicology of glycyrrhizin[J].Regulatory Toxicology and Pharmacology Rtp,2006,46(3):167-192.
    [4]RacˇkováL,JancˇinováV,PetríkováM,et al.Mechanism of anti-inflammatory action of liquorice extract and glycyrrhizin[J].Natural Product Research,2007,21(14):1234-1241.
    [5]Ishida S,Sakiya Y,Ichikawa T,et al.Uptake of glycyrrhizin by isolated rat hepatocytes[J].Biological and Pharmaceutical Bulletin,1993,16(3):293-297.
    [6]Mizutani K,Kambara T,Masuda H,et al.Glycyrrhetic acid monoglucuronide(MGGR):Biological activities[J].1998,International Congress Series,1998,1157(Towards Natural Medicine Research in the 21st Century):225-235.
    [7]Akao T.Hasty effect on the metabolism of glycyrrhizin by Eubacterium sp.GLH with Ruminococcus sp.PO1-3 and Clostridium innocuum ES24-06 of human intestinal bacteria[J].Biological and Pharmaceutical Bulletin,2000,23(1):6.
    [8]Ohtake N,Kido A,Kubota K,et al.A possible involvement of3-monoglucuronyl-glycyrrhetinic acid,a metabolite of glycyrrhizin(GL),in GL-induced pseudoaldosteronism[J].Life Sciences,2007,80(17):1545-1552.
    [9]Feng S,Li C,Xu X,et al.Screening strains for directed biosynthesis ofβ-d-mono-glucuronide-glycyrrhizin and kinetics of enzyme production[J].Journal of Molecular Catalysis B:Enzymatic,2006,43(1-4):63-67.
    [10]Qi F,Kaleem I,Lv B,et al.Enhancement of recombinantβ-D-glucuronidase production under low-shear modeled microgravity in Pichia pastoris[J].Journal of Chemical Technology and Biotechnology,2011,86(4):505-511.
    [11]Zou S,Zhou J,Kaleem I,et al.Preparative enrichment and separation of glycyrrhetinic acid monoglucuronide from fermentation broths with macroporous resins[J].Separation Science and Technology,2012,47(7):1055-1062.
    [12]Zou S,Liu G,Kaleem I,et al.Purification and characterization of a highly selective glycyrrhizin-hydrolyzingβ-glucuronidase from Penicillium purpurogenum Li-3[J].Process Biochemistry,2013,48(2):358-363.
    [13]Kanaoka M,Yano S,Kato H,et al.Synthesis and separation of 18 beta-glycyrrhetyl monoglucuronide from serum of a patient with glycyrrhizin-induced pseudo-aldosteronism[J].Chemical and Pharmaceutical Bulletin,1986,34(12):4978-4983.
    [14]Kanaoka M,Yano S,Kato H,et al.Studies on the enzyme immunoassay of bio-active constituents contained in oriental medicinal drugs.IV.Enzyme immunoassay of glycyrrhetic acid[J].Chemical&Pharmaceutical Bulletin,1988,36(1):8.
    [15]He D M,Kaleem I,Qin S Y,et al.Biosynthesis of glycyrrhetic acid 3-O-mono-β-d-glucuronide catalyzed byβ-d-glucuronidase with enhanced bond selectivity in an ionic liquid/buffer biphasic system[J].Process Biochemistry,2010,45(12):1916-1922.
    [16]Zhuang Z,Wang F,Naidu R,et al.Biosynthesis of Pd-Au alloys on carbon fiber paper:Towards an eco-friendly solution for catalysts fabrication[J].Journal of Power Sources,2015,291:132-137.
    [17]Marlow J J,Skennerton C T,Li Z,et al.Proteomic stable isotope probing reveals biosynthesis dynamics of slow growing methane based microbial communities[J].Frontiers in Microbiology,2016,7(386).
    [18]Rossi F,Philippis R D.Exocellular polysaccharides in microalgae and Cyanobacteria:Chemical features,role and enzymes and genes involved in their biosynthesis[M].Berlin:Springer International Publishing,2016.
    [19]Yang J F,Cao H,Liu H,et al.Synthesis and bioactivity of novel bis-heterocyclic compounds containing pyrazole and oxadiazoline[J].Journal of the Chinese Chemical Society,2011,58(3):369-375.
    [20]叶海,曹红,李扬,等.聚氨酯泡沫法固定化Penicillium purpurogenum Li-3细胞[J].食品工业,2012(11):122-125.
    [21]Cao H,Ye H,Li C,et al.Effect of microencapsulated cell preparation technology and conditions on the catalytic performance of Penicillium purpurogenum Li-3 strain cells[J].Process Biochemistry,2014,49(5):791-796.
    [22]王彩霞,张腾江,肖玉清,等.固定化细胞连续生产单葡萄糖醛酸基甘草次酸[J].农业工程学报,2016,32(15):301-307.
    [23]蔡静晓,曹红,叶海,等.固芯液化技术对微囊化Penicillium purpurogenum Li-3细胞使用性能的影响[J].中国食品添加剂,2016(10):69-76.
    [24]金开正,刘茂泉,王高林.柑桔果实体积测定的一种新方法[J].安徽农业科学,2001,29(4):522-524.
    [25]柴燚,梅乐和,林东强,等.中空海藻酸钙微胶囊的强度和扩散性能[J].浙江大学学报,2004,38(3):362-367.
    [26]马列,毛峥伟,高长有,等.戊二醛交联提高胶原/壳聚糖真皮支架抗细胞收缩能力的研究[J].组织工程与重建外科杂志,2005,1(5):291-292.
    [27]陆悦飞.中空海藻酸钙微胶囊固定化大肠杆菌表达P450BM-3催化吲哚生成靛蓝的研究[D].杭州:浙江大学,2006.
    [28]Nie L,Liu C,Wang J,et al.Effects of surface functionalized graphene oxide on the behavior of sodium alginate[J].Carbohydrate Polymers,2015,117(117):616-623.
    [29]周世海,蔡继业,陈勇.钙离子对海藻酸钠自组装行为影响的AFM研究[J].药物生物技术,2004,11(2):81-85.
    [30]陈一村,张文亮,邱健,等.基于差分动态显微技术的布朗运动实验研究[J].中国粉体技术,2017(2):30-34.
    [31]Khattak S F,Chin K S,Bhatia S R,et al.Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons[J].Biotechnology and Bioengineering,2007,96(1):156-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700