丁烯氧化脱氢钼铋系催化剂:晶相之间的协同效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Oxidative dehydrogenation of butene over bismuth molybdate catalysts:synergetic effect between different crystalline phases
  • 作者:张思泽 ; 万超 ; 曾亮 ; 程党国 ; 陈丰秋 ; 巩金龙
  • 英文作者:ZHANG Size;WAN Chao;ZENG Liang;CHENG Dangguo;CHEN Fengqiu;GONG Jinlong;College of Chemical and Biological Engineering,Zhejiang University;Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology,Tianjin University;
  • 关键词:烯烃 ; 氧化脱氢 ; 催化剂 ; 晶型结构
  • 英文关键词:alkene;;oxidative dehydrogenation;;catalyst;;crystalline phases
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:浙江大学化学工程与生物工程学院;天津大学化工学院天津化学化工协同创新中心;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金(21622606)
  • 语种:中文;
  • 页:HGJZ201901029
  • 页数:10
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:341-350
摘要
钼铋系催化剂以其优良的性能一直以来都是丁烯氧化脱氢研究和应用的热点。本文简述了已有研究中对钼铋系催化剂及改性后的多组分催化剂的晶相结构及其与反应性能间关系的研究进展。指出在钼铋催化剂中,有较多晶格缺陷的α-Bi_2(MoO_4)_3提供吸附位,氧流动性较强的γ-Bi_2MoO_6提供晶格氧,二者的协同作用提高了催化剂的活性。而在改性后的多组分钼铋系催化剂中,添加的组分与钼铋元素结合生成新的晶相,产生了更多的晶格缺陷及氧供体,从而提升了催化性能。对于钼铋系催化剂进一步改进的方向,本文认为在添加组分的方法基础上,还可以从催化剂表面结构方面入手,进行进一步的深入探究。
        Due to the excellent catalytic performance, the multicomponent bismuth molybdate catalysts have attracted much attention in oxidative dehydrogenation of butene. This review describes the recent progress about the crystalline phases and its relationship with the reaction performance for both single and multicomponent bismuth molybdates. The results indicate that in bismuth molybdate, α-Bi_2(MoO_4)_3 provides adsorption sites because of the presence of more lattice defects, and γ-Bi_2MoO_6 provides latticeoxygen because of higher oxygen mobility. The synergistic effect of the two phases enhances the activity ofthe catalysts. In multicomponent bismuth molybdate catalysts, the added elements combine bismuth and molybdenum to form new crystalline phases, resulting in more lattice defects and oxygen donors, and thus improving the catalytic performance. As for the further improvement of multicomponent bismuth molybdate catalysts, it is believed that, on the basis of the method of adding components, the surface structure of the catalysts can be further explored.
引文
[1]杨为民.碳四烃转化与利用技术研究进展及发展前景[J].化工进展, 2015, 34(1):1-9.YANG W M. Progress and perspectives on conversion andutilization of C4hydrocarbons[J]. Chemical Industry andEngineering Progress, 2015, 34(1):1-9.
    [2] JUNG J C, LEE H, SONG I K. Production of 1,3-butadiene fromC-4 raffinate-3 through oxidative dehydrogenation of n-buteneover bismuth molybdate catalysts[J]. Catalysis Surveys from Asia,2009, 13(2):78-93.
    [3] JUNG J C, KIM H, CHUNG Y, et al. Unusual catalytic behavior ofbeta-Bi2Mo2O9in the oxidative dehydrogenation of n-butene to1,3-butadiene[J]. Journal of Molecular Catalysis A:Chemical, 2007,264(1/2):237-240.
    [4] JUNG J C, KIM H, CHOI A S, et al. Preparation, characterization,and catalytic activity of bismuth molybdate catalysts for theoxidative dehydrogenation of n-butene into 1,3-butadiene[J].ournal of Molecular Catalysis A:Chemical, 2006, 259(1/2):166-170.
    [5] JUNG J C, LEE H, KIM H, et al. A synergistic effect of alpha-Bi2Mo3O12and gamma-Bi2MoO6catalysts in the oxidativedehydrogenation of C-4 raffinate-3 to 1,3-butadiene[J]. Journal ofMolecular Catalysis A:Chemical, 2007, 271(1/2):261-265.
    [6] SOARES A P V, DIMITROV L D, DE OLIVEIRA M C R A, et al.Synergy effects between beta and gamma phases of bismuthmolybdates in the selective catalytic oxidation of 1-butene[J].Applied Catalysis A:General, 2003, 253(1):191-200.
    [7] WAN C, CHENG D G, CHEN F Q, et al. The role of active phasein Ce modified BiMo catalysts for oxidative dehydrogenation of 1-butene[J]. Catalysis Today, 2016, 264:180-184.
    [8] WAN C, CHENG D G, CHEN F Q, et al. Characterization andkineticstudyofBiMoLaxoxidecatalystsforoxidativedehydrogenationof1-buteneto1,3-butadiene[J].ChemicalEngineering Science, 2015,135:553-558.
    [9] JUNG J C, LEE H, SEO J G, et al. Oxidative dehydrogenation of n-butene to 1, 3-butadiene over multicomponent bismuth molybdate(MII9Fe3Bi1Mo12O51)catalysts:effect of divalent metal(MII)[J].Catalysis Today, 2009, 141(3/4):325-329.
    [10] MORO-OKA Y, UEDA W. Multicomponent bismuth molybdatecatalyst:a highly functionalized catalyst system for the selectiveoxidation of olefin[J]. Advances in Catalysis, 1994, 40:233-273.
    [11] WAN C, CHENG D G, CHEN F Q, et al. Effects of zirconiumcontent on the catalytic performance of BiMoZrx in the oxidativedehydrogenationof1-buteneto1,3-butadiene[J].JournalofChemicalTechnology&Biotechnology, 2016, 91(2):353-358.
    [12] PARK J H, SHIN C H. Influence of the catalyst composition in theoxidativedehydrogenation of 1-butene over BiVx Mo1-xoxidecatalysts[J]. Applied Catalysis A:General, 2015, 495:1-7.
    [13] PARK J H, SHIN C H. Oxidative dehydrogenation of butenes tobutadiene over Bi-Fe-Me(Me=Ni, Co, Zn, Mn and Cu)-Mo oxidecatalysts[J]. Journal of Industrial and Engineering Chemistry,2015, 21:683-688.
    [14] WAN C, CHENG D G, CHEN F Q, et al. Oxidativedehydrogenation of 1-butene over vanadium modified bismuthmolybdate catalyst:an insight into mechanism[J]. RSC Advances,2015, 5(53):42609-42615.
    [15] PARK J H, SHIN C H. Influence of phosphorous addition onBi3Mo2Fe1oxide catalysts for the oxidative dehydrogenation of 1-butene[J]. Korean Journal of Chemical Engineering, 2016, 33(3):823-830.
    [16] MARS P, VAN KREVELEN D W. Oxidations carried out bymeans of vanadium oxide catalysts[J]. Chemical EngineeringScience, 1954, 3:41-59.
    [17] ZHAI Z, WANG X, LICHT R, et al. Selective oxidation andoxidative dehydrogenation of hydrocarbons on bismuth vanadiummolybdenum oxide[J]. Journal of Catalysis, 2015, 325:87-100.
    [18] GOLUNSKI S E, WALKER A P. Mechanism of low-temperatureoxydehydrogenation of 1-butene to 1, 3-butadiene over a novelPd-Fe-O catalyst[J]. Journal of Catalysis, 2001, 204(1):209-218.
    [19] CENTI G, TRIFIRO F. Some aspects of the control of selectivity incatalytic-oxidation on mixed oxides:a review[J]. AppliedCatalysis, 1984, 12(1):1-21.
    [20] GRASSELLI R K. Fundamental principles of selectiveheterogeneous oxidation atalysis[J]. Topics in Catalysis, 2002, 21(1/2/3):79-88.
    [21] ROYER S, DUPREZ D, KALIAGUINE S. Oxygen mobility inLaCoO3perovskites[J]. Catalysis Today, 2006, 112(1/2/3/4):99-102.
    [22] CAVANI F, TRIFIRO F. Some aspects that affect the selectiveoxidation of paraffins[J]. Catalysis Today, 1997, 36:431-439.
    [23] GRABOWSKI R. Kinetics of oxidative dehydrogenation of C2-C3alkanes on oxide catalysts[J]. Catalysis Reviews, 2006, 48:199.
    [24] VEDRINE J C. Acid-base characterization of heterogeneouscatalysts:an up-to-date overview[J]. Research on ChemicalIntermediates, 2015, 41(12):9387-9423.
    [25] RAO T S R P, KRISHNAMURTHY K R. Role of iron inmulticomponent molybdate catalysts for selective oxidation ofpropylene[J]. Journal of Catalysis, 1985, 95(1):209-219.
    [26] KEULKS G W. Mechanism of oxygen atom incorporation intoproducts of propylene oxidation over bismuth molybdate[J].Journal of Catalysis, 1970, 19(2):232-235.
    [27] BATIST P, LIPPENS B, SCHUIT G. Catalytic oxidation of 1-butene over bismuth molybdate catalysts:II. Dependence ofactivity and selectivity on catalyst composition[J]. Journal ofCatalysis, 1966, 5(1):55-64.
    [28] MATSUURA I, SCHUT R, HIRAKAWA K. The surface-structureof the active bismuth molybdate catalyst[J]. Journal of Catalysis,1980, 63(1):152-166.
    [29] BATIST P A, DER KINDEREN A H W M, LEEUWENBURGH Y,et al. Catalytic oxidation of 1-butene over bismuth molybdatecatalysts:Ⅳ. Dependence of activity on structures of catalysts[J].Journal of Catalysis, 1968, 12(1):45-60.
    [30] JUNG J C, KIM H, CHOI A S, et al. Effect of pH in the preparation ofgamma-Bi2MoO6for oxidative dehydrogenation of n-butene to 1,3-butadiene:correlation between catalytic performance and oxygenmobility of gamma-Bi2MoO6[J]. Catalysis Communications, 2007, 8(3):625-628.
    [31] JUNG J C, LEE H, PARK D R, et al. Effect of calcinationtemperature on the catalytic performance of gamma-Bi2MoO6inthe oxidative dehydrogenation of n-butene to 1, 3-butadiene[J].Catalysis Letters, 2009, 131(3/4):401-405.
    [32] JUNG J C, KIM H, KIM Y S, et al. Catalytic performance ofbismuth molybdate catalysts in the oxidative dehydrogenation ofC-4 raffinate-3 to 1,3-butadiene[J]. Applied Catalysis A:General,2007, 317(2):244-249.
    [33] WRAGG R D, ASHMORE P G, HOCKEY J A. Selective oxidation of propene over bismuth molybdate catalysts:the oxidation ofpropene using18O labeled oxygen and catalyst[J]. Journal ofCatalysis, 1971, 22(1):49-53.
    [34] BRAZDIL J F, SURESH D D, GRASSELLI R K. Redox kineticsof bismuth molybdate ammoxidation catalysts[J]. Journal ofCatalysis, 1980, 66(2):347-367.
    [35] ERTL G, KNOZINGER H, WEITKAMP J. Handbook ofheterogeneous catalysis[M]. VCH, 1997:290.
    [36] VEJUX A, COURTINE P. Interfacial reactions between V2O5andTiO2(anatase):role of structural-properties[J]. Journal of SolidState Chemistry, 1978, 23(1/2):93-103.
    [37] VAN OEFFELEN D A G, VAN HOOFF J H C, SCHUIT G C A. In situ measurements of the electrical-conductivity of bismuthmolybdate catalysts in operation for oxidative dehydrogenation ofbutene[J]. Journal of Catalysis, 1985, 95(1):84-100.
    [38] BRAZDIL J F, GLAESER L C, GRASSELLI R K. Aninvestigation of the role of bismuth and defect cation vacancies inselective oxidation and ammoxidation catalysis[J]. Journal ofCatalysis, 1983, 81(1):142-146.
    [39] NOTERMANN T, KEULKS G W, SKLIAROV A, et al.Physicochemical properties of bismuth iron molybdate system[J].Journal of Catalysis, 1975, 39(2):286-293.
    [40] AYKAN K, HALVORSON D, SLEIGHT A W, et al. Olefinoxidation and ammoxidation studies over molybdate, tungstate,and vanadate catalysts having point-defects[J]. Journal ofCatalysis, 1974, 35(3):401-406.
    [41] BRAZDIL J F, GRASSELLI R K. Relationship between solid-state structure and catalytic activity of rare-earth and bismuth-containing molybdate ammoxidation catalysts[J]. Journal ofCatalysis, 1983, 79(1):104-117.
    [42] SMITH G W, IBERS J A. Crystal structure of cobalt molybdateCoMoO4[J]. Acta Crystallographica, 1965, 19:269-275.
    [43] ABRAHAMS S C, REDDY J M. Crystal structure of the transition-metal molybdates:Ⅰ. Paramagnetic alpha-MnMoO4[J]. Journal ofChemical Physics, 1965, 43(7):2533-2543.
    [44] LECIEJEWICZ J. A neutron crystallographic investigation of leadmolybdenum oxide PbMoO4[J]. Zeitschrift Fur Kristallographie,1965, 121(2/3/4):158-164.
    [45] WENG L, DELMON B. Phase cooperation and remote-controleffects in selective oxidation catalysts[J]. Applied Catalysis A:General, 1992, 81(2):141-213.
    [46] SCHUH K, KLEIST W, HOJ M, et al. Bismuth molybdatecatalysts prepared by mild hydrothermal synthesis:influence ofpH on the selective oxidation of propylene[J]. Catalysts, 2015, 5(3):1554-1573.
    [47] BRAZDIL J F, TOFT M A, LIN S S Y, et al. Characterization ofbismuth-cerium-molybdate selective propylene ammoxidationcatalysts[J]. Applied Catalysis A:General, 2015, 495:115-123.
    [48] PARK J H, NOH H, PARK J W, et al. Effects of iron content onbismuth molybdate for the oxidative dehydrogenation of n-butenesto 1,3-butadiene[J]. Applied Catalysis A:General, 2012, 431/432:137-143.
    [49] PONCEBLANC H. Study of multiphasic molybdate-basedcatalysts:Ⅰ. Electrical-conductivity study of valence states andsolubility limits in mixed iron and cobalt molybdates[J]. Journal ofCatalysis, 1993, 142(2):373-380.
    [50] MILLET J. Study of multiphasic molybdate-based catalysts:Ⅱ.Synergy effect between bismuth molybdates and mixed iron andcobalt molybdates in mild oxidation of propene[J]. Journal ofCatalysis, 1993, 142(2):381-391.
    [51] SUN Y N, TAO L, YOU T Z, et al. Effect of sulfation on theperformance of Fe2O3/Al2O3catalyst in catalytic dehydrogenationof propane to propylene[J]. Chemical Engineering Journal, 2014,244:145-151.
    [52] UEDA W, MORO-OKA Y, IKAWA T. Study of ternary-component bismuth molybdate catalysts by18O2tracer in theoxidation of propylene to acrolein[J]. Journal of Catalysis, 1981,70:409-417.
    [53] PARK J H, ROW K, SHIN C H. Oxidative dehydrogenation of 1-butene to 1,3-butadiene over BiFe0.65Nix Mo oxide catalysts:effectof nickel content[J]. Catalysis Communications, 2013, 31:76-80.
    [54] UEDA W, CHEN C L, ASAKAWA K, et al. Catalytic properties oftricomponent metal oxides having the scheelite structure:Ⅱ.Structural stability in the reduction oxidation cycle[J]. Journal ofCatalysis, 1986, 101:369-375.
    [55] UEDA W, ASAKAWA K, CHEN C L, et al. Catalytic properties oftricomponent metal oxides having the scheelite structure:Ⅰ. Roleof bulk diffusion of lattice oxide ions in the oxidation of propylene[J]. Journal of Catalysis, 1986, 101:360-368.
    [56] HE D, UEDA W, MORO-OKA Y. Promotion effect of molybdatesupport on Bi2Mo3O12catalyst in the selective oxidative ofpropylene[J]. Catalysis Letters, 1992, 12(1/2/3):35-44.
    [57] MATSUURA I. Active bismuth molybdate on Me2+-molybdate basedcatalysts[J]. Studies in Surface Science&Catalysis, 1981, 7:1099-1112.
    [58] PONCEBLANC H, MILLET J M M, COUDURIER G, et al. Solidsolid-phase equilibria in the binary system CoMoO4-FeMoO4andeffect of FeIII on the phase equilibria[J]. Journal of PhysicalChemistry, 1992, 96(23):9462-9465.
    [59] KRYLOV O V, MAKSIMOV Y V, MARGOLIS L Y. In situ studyof ferric molybdate rearrangement in partial propylene oxidation[J]. Journal of Catalysis, 1985, 95(1):289-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700