FM-52M镍基合金堆焊层高温拉伸性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Temperature Tensile Properties of FM-52M Nickel-base Alloy Cladding
  • 作者:方虎 ; 李东 ; 曾春杰 ; 邵世友 ; 张涛
  • 英文作者:FANG Hu;LI Dong;ZENG Chunjie;SHAO Shiyou;ZHANG Tao;School of Materials Engineering, Shanghai University of Engineering Science;
  • 关键词:FM-52M ; 堆焊层 ; 热处理 ; 拉伸速率 ; 峰值温度
  • 英文关键词:FM-52M;;cladding;;heat treatment;;tensile rate;;peak temperature
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:上海工程技术大学材料工程学院;
  • 出版日期:2018-09-14 11:23
  • 出版单位:热加工工艺
  • 年:2018
  • 期:v.47;No.495
  • 基金:上海工程技术大学校级创新项目(16KY0516)
  • 语种:中文;
  • 页:SJGY201817016
  • 页数:4
  • CN:17
  • ISSN:61-1133/TG
  • 分类号:67-70
摘要
在304不锈钢钢板采用TIG堆焊了FM-52M镍基合金,并利用Gleeble热模拟试验机对FM-52M堆焊层试样在不同条件下的高温拉伸性能进行了研究。结果表明:经750℃保温30 min处理后,FM-52M合金的强度与750℃保温30 s处理的相比明显降低;在高温、应力缓慢加载的条件下,FM-52M的力学性能明显下降。热处理温度为950℃时,拉伸速率为0.01 mm/s的堆焊试样强度和断后伸长率均比拉伸速率为0.5 mm/s的小。经过1200℃的峰值温度保温后,合金的屈服强度比950℃的试样略低,但断后伸长率更好。
        FM-52 M nickel base alloy cladding was prepared on 304 stainless steel plate by TIG welding, and the high temperature tensile properties of FM-52 M cladding specimen under different conditions were studied by using Gleeble thermal simulation tester. The results show that the strength of FM-52 M alloy treated at 750℃ for 30 min is smaller than that of the alloy treated at 750℃for 30 s. Under the condition of high temperature and slow stress loading, the mechanical properties of FM-52 M decrease obviously. When the heat treatment temperature is 950 ℃, the strength and the elongation of the specimen under tensile rate of 0.01 mm/s are smaller than that under tensile rate of 0.5 mm/s. After heat treatment at the peak temperature of 1200 ℃, the yield strength of the alloy is slightly lower than that treated at 950 ℃, but the elongation is better.
引文
[1]唐正柱,陈佩寅.Nb和Ni对高温失塑裂纹敏感性影响机理研究[D].哈尔滨:哈尔滨焊接研究所,2007.
    [2]吴伟,陈佩寅,张锐.镍基焊接材料高温失塑裂纹的研究现状及研究趋势[J].焊接,2005(5):5-8.
    [3] Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal:Part I. Ductility and microstructural characterization[J]. Materials Science&Engineering A,2004,380(1):259-271.
    [4] Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal:Part II-Insight into the mechanism for ductility dip cracking[J]. Materials Science&Engineering A, 2004, 380(1/2):245-258.
    [6]马大卫.核电工业中专用镍基合金焊材应用[J].机械工人:热加工,2005(5):21-25.
    [7] Kikel J M, Parker D M. Ductility dip cracking susceptibility of Inconel filler metal 52 and Inconel alloy 690[J]. Office of Scientific&Technical Information Technical Reports, 1998.
    [8]陈俊梅,陆皓,陈静青,等.镍基合金焊缝DDC裂纹形成机制和调控研究进展[J].焊接,2012(4):7-13.
    [9]郑磊,董建新,张麦仓,等. Inconel 600及Inconel 718合金晶界偏聚研究进展[J].材料导报,2009,23(19):67-70.
    [10]刘君,杨合,孙志超,等. K403镍基高温合金的高温拉伸断裂行为[J].兵器材料科学工程,2014,37(6):25-28.
    [11]张开国,卢梭,缪竹骏,等. Inconel690合金的高温拉伸变形行为[J].机械工程材料,2011,35(11):16-19.
    [12] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-Base Alloys[M]. 2011.
    [13]呼立红,马光,王新凯,等.再生加热器不锈钢筒体开裂原因分析[J].石油化工腐蚀与防护,2014,31(6):30-33.
    [14]侍克献.超超临界汽轮机高中压转子用钢裂纹扩展行为研究[D].上海:上海发电设备成套设计研究院, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700