X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity
  • 作者:张体明 ; 赵卫民 ; 蒋伟 ; 王永霖 ; 杨敏
  • 英文作者:ZHANG Timing;ZHAO Weimin;JIANG Wei;WANG Yonglin;YANG Min;School of Materials Science and Engineering,China University of Petroleum (East China);School of Aeronautical Manufacturing Engineering,Nanchang Hangkong University;
  • 关键词:X80管线钢 ; 煤制气 ; 焊接接头 ; 残余应力 ; 氢富集
  • 英文关键词:X80 pipeline steel;;coal gas;;welded joint;;residual stress;;hydrogen enrichment
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:中国石油大学(华东)材料科学与工程学院;南昌航空大学航空制造工程学院;
  • 出版日期:2019-02-11
  • 出版单位:金属学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金项目No.51705535;; 中国博士后科学基金项目No.2016M602218;; 山东省自然科学基金项目No.ZR2017MEE005~~
  • 语种:中文;
  • 页:JSXB201902010
  • 页数:9
  • CN:02
  • ISSN:21-1139/TG
  • 分类号:90-98
摘要
采用ABAQUS软件建立了煤制气管线X80钢螺旋焊管三维模型,综合考虑焊接残余应力和组织不均匀性的影响,进行了焊接接头氢扩散的数值模拟。结果表明,残余应力和组织不均匀都会导致氢扩散的发生,氢浓度的分布规律与静水应力分布特征相似,即静水应力越高的区域,相应的氢浓度也较高,说明残余应力的影响大于组织不均匀性的影响。氢浓度最高的焊缝区比不考虑残余应力时提高了2.7倍,通过等效充氢压力下的慢应变速率拉伸实验发现,氢脆系数由不考虑残余应力时的18.56%上升至考虑残余应力所致氢富集条件下的32.53%,增加幅度达到75.27%。因此,残余应力是导致焊接接头氢富集进而影响氢脆失效的重要因素,采用数值模拟方法确定氢富集程度则是评估煤制气管线焊接接头安全性的重要基础。
        Welded joints of hydrogen-containing coal gas transmission pipelines are prone to hydrogen enrichment due to their severe microstructure inhomogeneity and residual stress in them, and thus lead to the decrease of plasticity and toughness. In order to investigate the effect of local hydrogen enrichment on the safety of hydrogen-containing coal gas transport pipelines, a three dimensional numerical simulation model was established to investigate the hydrogen diffusion behaviour considering the combined effect of microstructure inhomogeneity and residual stress in X80 spiral welded pipeline by using ABAQUS software. Results showed that both microstructure inhomogeneity and residual stress could lead to hydrogen diffusion. The distribution of hydrogen concentration in the pipeline was similar to that of hydrostatic stress distribution. That is, the higher the hydrostatic stress value, the higher the corresponding hydrogen concentration, indicating that the influence of residual stress on the hydrogen diffusion behaviour is greater than that of microstructure inhomogeneity. The enriched hydrogen concentration at the center region of the welded joint with the highest residual stress was 2.7 times higher than that without considering residual stress. Equivalent charging hydrogen pressure was put forward to reflect the degree of hydrogen enrichment in weld metal. Slow strain rate tension(SSRT) tests were subsequently performed on weld metal specimen at equivalent charging hydrogen pressure to investigate the effect of hydrogen enrichment on hydrogen embrittlement(HE) susceptibility. The SSRT tests performed in nitrogen gas and simulated coal gas were used for comparison. The HE index increased from 18.56% in simulated coal gas to 32.53% in equivalent charging hydrogen pressure, increasing by 75.27%. Therefore, the residual stress is a non-ignorable factor, because it could lead to hydrogen enrichment and could significantly influence HE susceptibility in welded joint. The determination of hydrogen enrichment in welded joint by using numerical simulation method is the basis to evaluate the safety of coal gas transmission pipeline.
引文
[1]Hao X Q,An H Z,Qi H,et al.Evolution of the exergy flow network embodied in the global fossil energy trade:Based on complex network[J].Appl.Energy,2016,162:1515
    [2]Dodds P E,McDowall W.The future of the UK gas network[J].Energy Policy,2013,60:305
    [3]Nie W J,Shang C J,You Y,et al.Microstructure and toughness of the simulated welding heat affected zone in X100 pipeline steel with high deformation resistance[J].Acta Metall.Sin.,2012,48:797(聂文金,尚成嘉,由洋等.抗变形X100管线钢模拟焊接热影响区的组织与韧性研究[J].金属学报,2012,48:797)
    [4]Briottet L,Batisse R,de Dinechin G,et al.Recommendations on X80 steel for the design of hydrogen gas transmission pipelines[J].Int.J.Hydrogen Energy,2012,37:9423
    [5]Dodds P E,Demoullin S.Conversion of the UK gas system to transport hydrogen[J].Int.J.Hydrogen Energy,2013,38:7189
    [6]Miao C L,Shang C J,Wang X M,et al.Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content[J].Acta Metall.Sin.,2010,46:541(缪成亮,尚成嘉,王学敏等.高Nb X80管线钢焊接热影响区显微组织与韧性[J].金属学报,2010,46:541)
    [7]Zhu Z X,Kuzmikova L,Li H J,et al.The effect of chemical composition on microstructure and properties of intercritically reheated coarse-grained heat-affected zone in X70 steels[J].Metall.Mater.Trans.,2014,45B:229
    [8]Chen X W,Qiao G Y,Han X L,et al.Effects of Mo,Cr and Nb on microstructure and mechanical properties of heat affected zone for Nb-bearing X80 pipeline steels[J].Mater.Des.,2014,53:888
    [9]Sowards J W,Gn?upel-Herold T,McColskey J D,et al.Characterization of mechanical properties,fatigue-crack propagation,and residual stresses in a microalloyed pipeline-steel friction-stir weld[J].Mater.Des.,2015,88:632
    [10]Nasim K,Arif A F M,Al-Nassar Y N,et al.Investigation of residual stress development in spiral welded pipe[J].J.Mater.Process.Technol.,2015,215:225
    [11]Salerno G,Bennett C,Sun W,et al.On the interaction between welding residual stresses:A numerical and experimental investigation[J].Int.J.Mech.Sci.,2018,144:654
    [12]Jebaraj J J M,Morrison D J,Suni I I.Hydrogen diffusion coefficients through Inconel 718 in different metallurgical conditions[J].Corros.Sci.,2014,80:517
    [13]Rezende M C,Araujo L S,Gabriel S B,et al.Hydrogen embrittlement in nickel-based superalloy 718:Relationship between g′+g″precipitation and the fracture mode[J].Int.J.Hydrogen Energy,2015,40:17075
    [14]Zhang T M,Wang Y,Zhao W M,et al.Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment[J].Acta Metall.Sin.,2015,51:1101(张体明,王勇,赵卫民等.高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J].金属学报,2015,51:1101)
    [15]Zhao W M,Zhang T M,Zhao Y J,et al.Hydrogen permeation and embrittlement susceptibility of X80 welded joint under highpressure coal gas environment[J].Corros.Sci.,2016,111:84
    [16]Yan C Y,Liu C Y,Yan B.3D modeling of the hydrogen distribution in X80 pipeline steel welded joints[J].Comput.Mater.Sci.,2014,83:158
    [17]Jiang W C,Gong J M,Tang J Q,et al.Finite element simulation of the effect of welding residual stress on hydrogen diffusion[J].Acta Metall.Sin.,2006,42:1221(蒋文春,巩建鸣,唐建群等.焊接残余应力对氢扩散影响的有限元模拟[J].金属学报,2006,42:1221)
    [18]Chu W Y,Qiao L J,Li J X,et al.Hydrogen Embrittlement and Stress Corrosion Cracking[M].Beijing:Science Press,2013:37(褚武扬,乔利杰,李金许等.氢脆和应力腐蚀--基础部分[M].北京:科学出版社,2013:37)
    [19]Toribio J,Kharin K,Lorenzo M,et al.Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels[J].Corros.Sci.,2011,53:3346
    [20]Zhang X H,Tan C Y,Chen P Y.Numerical simulation of hydrogen diffusion in welded joint[J].Trans.China Weld.Inst.,2000,21(3):51(张显辉,谭长瑛,陈佩寅.焊接接头氢扩散数值模拟(I)[J].焊接学报,2000,21(3):51)
    [21]Bell D.Divergence theorems in path space III:Hypoelliptic diffusions and beyond[J].J.Funct.Anal.,2007,251:232
    [22]Chu W Y,Qiao L J,Chen Q Z,et al.Fracture and Environmental Fracture[M].Beijing:Science Press,2000:99(褚武扬,乔利杰,陈奇志等.断裂与环境断裂[M].北京:科学出版社,2000:99)
    [23]Wang Y F,Gong J M,Jiang W C.A quantitative description on fracture toughness of steels in hydrogen gas[J].Int.J.Hydrogen Energy,2013,38:12503
    [24]Jiang W C,Gong J M,Tang J Q,et al.Numerical simulation of hydrogen diffusion under welding residual stress[J].Trans.China Weld.Inst.,2006,27(11):57(蒋文春,龚建鸣,唐建群等.焊接残余应力下氢扩散的数值模拟[J].焊接学报,2006,27(11):57)
    [25]Nanninga N E,Levy Y S,Drexler E S,et al.Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments[J].Corros.Sci.,2012,59:1
    [26]Kong D J,Wu Y Z,Long D.Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J].J.Iron Steel Res.,Int.,2013,20:40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700