基于高通量测序的乐安江冬季细菌群落特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of bacterial community in Le'an River in winter based on high-throughput sequencing
  • 作者:肖汉玉 ; 王鹏 ; 刘君政 ; 李传琼 ; 李燕 ; 赵君
  • 英文作者:Hanyu Xiao;Peng Wang;Junzheng Liu;Chuanqiong Li;Yan Li;Jun Zhao;Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University;School of Geography and Environment, Jiangxi Normal University;
  • 关键词:乐安江 ; 高通量测序 ; 细菌群落 ; 环境因子
  • 英文关键词:Le'an River;;high-throughput sequencing;;bacterial community;;environmental factors
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:江西师范大学鄱阳湖湿地与流域研究教育部重点实验室;江西师范大学地理与环境学院;
  • 出版日期:2018-07-19 13:45
  • 出版单位:微生物学报
  • 年:2019
  • 期:v.59;No.345
  • 基金:国家自然科学基金(41661017);; 江西省自然科学基金(20151BAB213035);; 江西省重大生态安全问题监控协同创新中心资助项目(JXS-EW-00)~~
  • 语种:中文;
  • 页:WSXB201901019
  • 页数:14
  • CN:01
  • ISSN:11-1995/Q
  • 分类号:187-200
摘要
【目的】分析乐安江从上游至下游水体细菌群落结构组成变化,揭示细菌群落结构组成变化的影响因素。【方法】分析不同河段水体中C、N、P、Cu、Zn、As和Pb等化学指标。对水体DNA的16S rRNA基因进行高通量测序确定细菌群落特征。基于Bray-Curtis距离的采样点非度量多维尺度(NMDS)分析和聚类分析研究乐安江水体细菌群落结构差异,基于冗余分析(RDA)研究环境因子与细菌群落的关系。【结果】乐安江水体中C、N、P、Cu、Zn、As和Pb等化学指标含量中下游偏高。中游河水受德兴铜矿废水影响,细菌群落多样性降低,下游受农业、生活废水影响,细菌群落丰富度和多样性升高。水体中优势菌群为β-变形菌纲(Beta-proteobacteria,53.03%)、放线菌门(Actinobacteria,20.24%)和拟杆菌门(Bacteroidetes,14.75%)。中游受德兴铜矿废水影响,Beta-proteobacteria丰度增大,而Actinobacteria丰度减小;下游受微生物间捕食影响,Bacteroidetes丰度下降。在细菌群落与环境因子的关系中,DO是解释乐安江细菌群落结构变化的最佳环境因子。【结论】乐安江中游德兴铜矿废水和中下游农业、生活废水明显改变了水体细菌群落结构组成,使水体细菌群落特征从上游到下游发生显著变化。本研究为揭示人类活动对乐安江水生态环境的影响提供了参考性数据。
        [Objective] The aims of this study were to analyze the compositional changes of bacterial community in Le'an River from upstream to downstream, and to reveal the main environmental factors shaping the bacterial community. [Methods] The hydrochemical indicators in different reaches, such as C, N, P, Cu, Zn, As and Pb, were measured. High-throughput sequencing of 16 S rRNA gene was used to profile the bacterial community structure. Non-metric Multidimensional Scale(NMDS) Analysis and Cluster Analysis of sampling sites based on Bray-Curtis distance were used to explore the bacterial community structure along Le'an River. Redundancy analyzed(RDA) was used to analyze the relationship between environmental factors and bacterial communities. [Results] The concentrations of C, N, P, Cu, Zn, As and Pb were higher in the middle and lower reaches than those in the upper reaches. The diversity of bacterial communities decreased in the middle reaches because of the wastewater from the Dexing Copper Mine, and the richness and diversity increased in the lower reaches because of the wastewater from the agricultural and domestic wastewater. The predominant bacteria composition was Beta-proteobacteria(53.03%), Actinobacteria(20.24%) and Bacteroidetes(14.75%). Due to the influence of Dexing Copper Mine, the abundance of Beta-proteobacteria increased in the middle reaches, while the abundance of Actinobacteria decreased. In the lower reaches, the abundance of Bacteroidetes decreased due to the inter-microbial predation. In the relationship between the bacterial community and environmental factors, dissolved oxygen(DO) was the best environmental factor explaining the changes of bacterial community structure along the Le'an River. [Conclusion] Wastewater from the Dexing Copper Mine in the middle reaches of Le'an River and the agricultural and domestic wastewater in the middle and lower reaches changed the bacterial community structure, resulting the significant changes of the bacterial community along Le'an River. These findings provide a reference for revealing the influences of human activities on the water ecology of the Le'an River.
引文
[1]Cole JJ,Prairie YT,Caraco NF,McDowell WH,Tranvik LJ,Striegl RG,Duarte CM,Kortelainen P,Downing JA,Middelburg JJ,Melack J.Plumbing the global carbon cycle:Integrating inland waters into the terrestrial carbon budget.Ecosystems,2007,10(1):172-185.
    [2]Caporaso JG,Lauber CL,Walters WA,Berg-Lyons D,Lozupone CA,Turnbaugh PJ,Fierer N,Knight R.Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.Proceedings of the National Academy of Sciences of the United States of America,2011,108(S1):4516-4522.
    [3]Liu C,Li JB,Rui JP,An JX,Li XZ.The applications of the16S rRNA gene in microbial ecology:current situation and problems.Acta Ecologica Sinica,2015,35(9):2769-2788.(in Chinese)刘驰,李家宝,芮俊鹏,安家兴,李香真.16S rRNA基因在微生物生态学中的应用.生态学报,2015,35(9):2769-2788.
    [4]Wang P,Chen B,Li CQ,Li Y.Bacterial communities in Nanchang section of the Ganjiang River in wet season.China Environmental Science,2016,36(8):2453-2462.(in Chinese)王鹏,陈波,李传琼,李燕.赣江南昌段丰水期细菌群落特征.中国环境科学,2016,36(8):2453-2462.
    [5]Tang J,Xu XR,Shang CY,Niu XJ,Zhang XM,Yi Y.Association of bacterial diversity in city area of Nanming river with environmental factors.Acta Microbiologica Sinica,2015,55(8):1050-1059.(in Chinese)唐婧,徐小蓉,商传禹,牛晓娟,张习敏,乙引.南明河城区河段细菌多样性与环境因子的关系.微生物学报,2015,55(8):1050-1059.
    [6]Gibbons SM,Jones E,Bearquiver A,Blackwolf F,Roundstone W.Human and environmental impacts on river sediment microbial communities.PLoS One,2014,9(5):e97435.
    [7]Wang P,Chen B,Yuan RQ,Li CQ,Li Y.Characteristics of aquatic bacterial community and the influencing factors in an urban river.Science of the Total Environment,2016,569-570:382-389.
    [8]Sun HH,He XW,Ye L,Zhang XX,Wu B,Ren HQ.Diversity,abundance,and possible sources of fecal bacteria in the Yangtze River.Applied Microbiology and Biotechnology,2017,101(5):2143-2152.
    [9]Liu LY,LüX,Li W,Chen LH,Li YR,Lin BJ.Relationship between bacterial community and its environmental in Zuohai Lake,China.Acta Microbiologica Sinica,2015,55(9):1177-1189.(in Chinese)刘兰英,吕新,李巍,陈丽华,李玥仁,林碧娇.福州左海湖细菌群落与环境的关系.微生物学报,2015,55(9):1177-1189.
    [10]Kou WB,Huang ZY,Zhang J,Liu QC,Liu FP,Liu YZ,Wu L.Bacterial community structure and composition in Lake Poyang:a case study in the Songmenshan Region,China.Acta Ecologica Sinica,2015,35(23):7608-7614.(in Chinese)寇文伯,黄正云,张杰,刘倩纯,刘芳鹏,刘以珍,吴兰.鄱阳湖湖泊细菌群落组成及结构--以松门山为例.生态学报,2015,35(23):7608-7614.
    [11]Chen ZJ,Ding CY,Zhu JY,Li B,Huang J,Du ZM,Wang Y,Li YY.Community structure and influencing factors of bacterioplankton during low water periods in Danjiangkou Reservoir.China Environmental Science,2017,37(1):336-344.(in Chinese)陈兆进,丁传雨,朱静亚,李冰,黄进,杜宗明,王亚,李玉英.丹江口水库枯水期浮游细菌群落组成及影响因素研究.中国环境科学,2017,37(1):336-344.
    [12]Bai J,Liu XS,Hou R,Zhao YG,Gao HW.Community structure and influencing factors of bacterioplankton in the southern South China Sea.China Environmental Science,2014,34(11):2950-2957.(in Chinese)白洁,刘小沙,侯瑞,赵阳国,高会旺.南海南部海域浮游细菌群落特征及影响因素研究.中国环境科学,2014,34(11):2950-2957.
    [13]Yu LY,Yang H,Huang CC,Huang T,Yu YH,Jiang QL,Liu DQ,Li SD.Characteristic of nitrogen and phosphorous pollution in Lake Dianchi and its inflow rivers in summer.Journal of Lake Sciences,2016,28(5):961-971.(in Chinese)余丽燕,杨浩,黄昌春,黄涛,余艳红,姜泉良,刘大庆,李帅东.夏季滇池和入滇河流氮、磷污染特征.湖泊科学,2016,28(5):961-971.
    [14]Du XL,Qu JH,Liu HJ,Qi WX.Distributions of trace metals in the surface water in Wenyu River.Acta Scientiae Circumstantiae,2012,32(1):37-42.(in Chinese)杜晓丽,曲久辉,刘会娟,齐维晓.温榆河水体中重金属含量分布及赋存状态解析.环境科学学报,2012,32(1):37-42.
    [15]Sarria-Villa R,Ocampo-Duque W,Páez M,Schuhmacher M.Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes,and implications for risk assessment.Science of the Total Environment,2016,540:455-465.
    [16]Findlay S.Stream microbial ecology.Journal of the North American Benthological Society,2010,29(1):170-181.
    [17]Chen ZJ,Chen HY,Li YY,Huang J,Lu KJ,Zhao HJ,Li B,Zhu JY,Hu LQ.Community structure and influencing factors of bacterioplankton in the Main Cancel of the Mid-line Project of South-to-North Water Division in sections of Henan Province.China Environmental Science,2017,37(4):1507-1513.(in Chinese)陈兆进,陈海燕,李玉英,黄进,鲁开杰,赵海军,李冰,朱静亚,胡兰群.南水北调中线干渠(河南段)浮游细菌群落组成及影响因素.中国环境科学,2017,37(4):1507-1513.
    [18]de Oliveira LFV,Margis R.The source of the river as a nursery for microbial diversity.PLoS One,2015,10(3):e0120608.
    [19]Read DS,Gweon HS,Bowes MJ,Newbold LK,Field D,Bailey MJ,Griffiths RI.Catchment-scale biogeography of riverine bacterioplankton.The ISME Journal,2015,9(2):516-526.
    [20]Savio D,Sinclair L,Ijaz UZ,Parajka J,Reischer GH,Stadler P,Blaschke AP,Bl?schl G,Mach RL,Kirschner AKT,Farnleitner AH,Eiler A.Bacterial diversity along a 2600?km river continuum.Environmental Microbiology,2015,17(12):4994-5007.
    [21]Kolmakova OV,Gladyshev MI,Rozanov AS,Peltek SE,Trusova MY.Spatial biodiversity of bacteria along the largest arctic river determined by next-generation sequencing.FEMSMicrobiology Ecology,2014,89(2):442-450.
    [22]Chen B,Wang P,Zhang H.The review of nitrogen and phosphorus pollution in Poyang lake water.Journal of Jiangxi Normal University(Natural Science),2016,40(4):437-441.(in Chinese)陈波,王鹏,张华.鄱阳湖水体氮磷污染研究进展.江西师范大学学报(自然科学版),2016,40(4):437-441.
    [23]Liu FG,Wang SG,Guo YY,Cao M.Spatial-temporal variations of pollutant fluxes of inflow and outflow of Lake Poyang(2008-2012).Journal of Lake Sciences,2014,26(5):641-650.(in Chinese)刘发根,王仕刚,郭玉银,曹美.鄱阳湖入湖、出湖污染物通量时空变化及影响因素(2008-2012年).湖泊科学,2014,26(5):641-650.
    [24]周雪玲.乐安河-鄱阳湖段湿地水生植物对重金属的富集效应研究.江西师范大学硕士学位论文,2014.
    [25]He ZJ,Yuan SL.Analysis on source and distribution of heavy metal of Le’an river.Guangdong Chemical Industry,2009,36(7):139-141,148.(in Chinese)何宗健,袁胜林.乐安江流域重金属的来源与分布探析.广东化工,2009,36(7):139-141,148.
    [26]Li M,Gao HY,Zhang Q,Jiang SY.Spatial and temporal variations of non-point phosphorus leaching in Le’an River of Poyang Lake Basin.Journal of Southeast University(Natural Science Edition),2015,45(4):805-810.(in Chinese)李淼,高海鹰,张奇,姜三元.鄱阳湖乐安江流域非点源磷输移的时空变化.东南大学学报(自然科学版),2015,45(4):805-810.
    [27]Dennis KL,Wang YW,Blatner NR,Wang SY,Saadalla A,Trudeau E,Roers A,Weaver CT,Lee JJ,Gilbert JA,Chang EB,Khazaie K.Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells.Cancer Research,2013,73(19):5905-5913.
    [28]Oksanen J,Kindt R,Legendre P,Hara B,Stevens MHH,Oksanen MJ.The Vegan Package:Community Ecology Package.2010.
    [29]Besemer K,Singer G,Quince C,Bertuzzo E,Sloan W,Battin TJ.Headwaters are critical reservoirs of microbial diversity for fluvial networks.Proceedings of the Royal Society B:Biological Sciences,2013,280(1771):20131760.
    [30]Liu ZH,Huang SB,Sun GP,Xu ZC,Xu MY.Phylogenetic diversity,composition and distribution of bacterioplankton community in the Dongjiang River,China.FEMSMicrobiology Ecology,2012,80(1):30-44.
    [31]Xia N,Xia XH,Liu T,Hu LJ,Zhu BT,Zhang XT,Dong JW.Characteristics of bacterial community in the water and surface sediment of the Yellow River,China,the largest turbid river in the world.Journal of Soils and Sediments,2014,14(11):1894-1904.
    [32]Burkert U,Warnecke F,Babenzien D,Zwirnmann E,Pernthaler J.Members of a readily enrichedβ-Proteobacterial clade are common in surface waters of a humic lake.Applied and Environmental Microbiology,2003,69(11):6550-6559.
    [33]?imek K,Pernthaler J,Weinbauer MG,Hornák K,Dolan JR,Nedoma J,Ma?ín M,Amann R.Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir.Applied and Environmental Microbiology,2001,67(6):2723-2733.
    [34]Taipale S,Jones RI,Tiirola M.Vertical diversity of bacteria in an oxygen-stratified humic lake,evaluated using DNA and phospholipid analyses.Aquatic Microbial Ecology,2009,55(1):1-16.
    [35]Hahn MW,Lünsdorf H,Wu QL,Schauer M,H?fle MG,Boenigk J,Stadler P.Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia.Applied and Environmental Microbiology,2003,69(3):1442-1451.
    [36]Jürgens K,Pernthaler J,Schalla S,Amann R.Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing.Applied and Environmental Microbiology,1999,65(3):1241-1250.
    [37]Spietz RL,Williams CM,Rocap G,Horner-Devine MC.Adissolved oxygen threshold for shifts in bacterial community structure in a seasonally hypoxic Estuary.PLoS One,2015,10(8):e0135731.
    [38]Horner-Devine MC,Leibold MA,Smith VH,Bohannan BJM.Bacterial diversity patterns along a gradient of primary productivity.Ecology Letters,2003,6(7):613-622.
    [39]Kirchman DL,Dittel AI,Findlay SEG,Fischer D.Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River,New York.Aquatic Microbial Ecology,2004,35(3):243-257.
    [40]Krause E,Wichels A,Giménez L,Lunau M,Schilhabel MB,Gerdts G.Small changes in pH have direct effects on marine bacterial community composition:a microcosm approach.PLoS One,2012,7(10):e47035.
    [41]Hu CH,Zhou P,Huang P,Du J,Zhou WB.Behavior characteristics of dissolved heavy metals and health risks assessment from Poyang Lake basin,China.Journal of Agro-Environment Science,2012,31(5):1009-1014.(in Chinese)胡春华,周鹏,黄萍,杜洁,周文斌.鄱阳湖流域溶解态重金属行为特征及健康风险评价.农业环境科学学报,2012,31(5):1009-1014.
    [42]Shang XL,Yu HP,Chen PQ,Jian MF.The impact of water environmental factors on the migration and transformation of heavy metals of Cu,Pb,Cd in Le’an River and Poyang Lake.Journal of Jiangxi Normal University(Natural Science),2014,38(6):650-655.(in Chinese)尚小龙,余厚平,陈朴青,简敏菲.乐安河-鄱阳湖段水环境因子对重金属Cu、Pb、Cd迁移转化的影响.江西师范大学学报(自然科学版),2014,38(6):650-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700