不同氮素供应水平对菘蓝生长及药材质量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Different Nitrogen Supply Levels on the Growth of Isatis indigotica Fort. and Quality of Medicinal Materials
  • 作者:关佳莉 ; 王刚 ; 张梦蕊 ; 陈曦 ; 曹艺雯 ; 唐晓清 ; 王康才
  • 英文作者:GUAN Jiali;WANG Gang;ZHANG Mengrui;CHEN Xi;CAO Yiwen;TANG Xiaoqing;WANG Kangcai;Institute of Chinese Medicinal Materials, Nanjing Agricultural University;
  • 关键词:菘蓝 ; 氮供应水平 ; 生长 ; 碳氮代谢 ; 药材质量
  • 英文关键词:Isatis indigotica Fort.;;nitrogen supply levels;;growth;;carbon and nitrogen metabolism;;quality of medicinal materials
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:南京农业大学中药材研究所;
  • 出版日期:2019-08-06
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金项目(31171486);; 南京农业大学校级大学生实践创新训练项目(1714A15)
  • 语种:中文;
  • 页:HNXB201910019
  • 页数:9
  • CN:10
  • ISSN:11-2265/S
  • 分类号:201-209
摘要
为探究低氮营养对菘蓝生长及药材质量的影响,采用盆栽试验,研究不同氮素水平0(N0)、2.5(N1)、5.0(N2)、10.0(N3)、15.0 mmol·L~(-1)(CK)下菘蓝生物量积累、光合参数、根与叶中可溶性糖、游离氨基酸、硝态氮含量以及主要活性成分含量的响应。结果表明,不同供氮水平下菘蓝生长与药材质量的响应存在差异。随着氮素浓度的增加,叶与根的干重均逐渐增加,根冠比则先增加后减小,且在N1处理下达到最大值。叶中可溶性糖含量随着氮素浓度的增加呈先减少后增加的趋势,N0处理下达到最大值,根中可溶性糖含量的变化趋势与叶中存在差异,在2.5~15.0 mmol·L~(-1)氮水平下,根中可溶性糖含量呈先增加后减少的趋势,在N2处理下达到最大值。随着氮素浓度的增加,根与叶中游离氨基酸的含量均呈先增加后减少的趋势,且在N3处理下达到最大值,根和叶中硝态氮含量则呈先减少后增加的趋势,N3处理下硝态氮含量显著低于其他处理。净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)随着氮素浓度的增加均表现出先增加后减少的趋势,在N3处理下达到最大值,胞间二氧化碳浓度(Ci)呈逐渐降低的趋势。随着氮素浓度的增加,叶中靛蓝含量随之逐渐增加,靛玉红含量则表现出先减少后增加的趋势,N3处理下为最小值,总黄酮含量则呈逐渐减少的趋势。根中(R,S)-告依春含量随着氮浓度的增加呈先增加后减少的趋势,在N3处理下最高,表明适当的氮素供应有利于靛蓝与(R,S)-告依春的积累,而低氮条件有利于提高靛玉红与总黄酮含量。根中(R,S)-告依春单株产量在N3处理下最高,表明可以适当降低施氮量以获得活性成分含量较高的板蓝根。本研究结果为菘蓝规范化栽培中合理施氮提供了理论参考。
        A pot experiment was carried out to explore the effect of different nitrogen levels on the growth of I. indigotica and quality of medicinal materials. The response of the biomass accumulation, the photosynthetic parameters, the contents of soluble sugar, free amino acid, nitrate nitrogen and main active components of I. indigotica under 0(N0), 2.5(N1), 5.0(N2), 10.0(N3), 15.0 mmol·L~(-1)(CK) nitrogen levels were investigated. The results showed that dry weights of leaves and roots increased with the increase of nitrogen concentration, and the root-shoot ratios increased initially and then decreased. The content of soluble sugar in leaves showed a trend of decreasing initially and then increasing with the increase of nitrogen concentration. The soluble sugar content in roots showed the different trend as that in leaves. In the nitrogen concentration range of 2.5~15.0 mmol·L~(-1), the soluble sugar content in roots increased initially and then decreased. The contents of free amino acid in roots and leaves increased initially and then decreased with increasing of nitrogen concentration. The free amino acid content under N3 treatment was the highest. The nitrate nitrogen contents in roots and leaves showed a trend of decreasing initially and then increasing. The nitrate nitrogen content under N3 treatment was significantly lower than that of the other treatments. The net photosynthetic rate(Pn), transpiration rate(Tr) and stomatal conductance(Gs) of leaves increased initially then decreased with the increase of nitrogen concentration, and the intercellular CO_2 concentration(Ci) decreased. The content of indigo in leaves gradually increased with the increase of nitrogen concentration, and the content of indirubin showed a trend of decreasing initially and then increasing. The content of total flavonoid in leaves showed a tendency of declining with the increase of nitrogen concentration. The content of(R,S)-epigoitrin in roots increased initially and then decreased with the increase of nitrogen concentration, and the content was highest under N3 treatment. The results indicated appropriate nitrogen supply is conducive to the accumulation of indigo and(R,S)-epigoitrin, while low nitrogen condition is favorable for increasing the contents of indirubin and total flavonoid. The(R,S)-epigoitrin yield in per plant was the highest under N3 treatment, indicating that suitably reduced nitrogen application could obtain Radix Isatidis with higher contents of active components. The study provides a theoretical reference for the reasonable application of nitrogen in the standardized cultivation of I. indigotica Fort.
引文
[1] Frink C R,Waggoner P E,Ausubel J H.Nitrogen fertilizer:retrospect and prospect [J].Proceedings of the National Academy of Sciences of the United States of America,1999,96(4):1175-1180
    [2] 刘钦普.中国化肥投入区域差异及环境风险分析[J].中国农业科学,2014,47(18):3596-3605
    [3] Huang J,Huang Z,Jia X,Hu R,Xiang C.Long-term reduction of nitrogen fertilizer use through knowledge training in rice production in China[J].Agricultural Systems,2015,135:105-111
    [4] 国家药典委员会.中华人民共和国药典[M].北京:中国医药科技出版社,2015
    [5] 牛振明.化肥减量及氮素形态配比对甘蓝养分吸收、产量和品质的影响[D].兰州:甘肃农业大学,2014:34-36
    [6] 易媛,董召娣,张明伟,蔡宝宾,朱新开.减氮对半冬性中筋小麦产量、NUE及氮代谢关键酶活性的影响[J].核农学报,2015,29(2):365-374
    [7] Qiao J,Yang L,Yan T,Xue F,Zhao D.Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area[J].Agriculture Ecosystems & Environment,2012,146(1):103-112
    [8] 白钰,唐晓清,施晟璐,王雨,杨月,王永中,王康才.氮营养对菘蓝生长及活性成分积累的影响[J].核农学报,2017,31(1):169-178
    [9] 唐晓清,肖云华,赵雪玲,杨月,王康才.菘蓝根和叶的生物量与活性成分对氮素形态的响应[J].南京农业大学学报,2016,39(1):70-77
    [10] 肖云华,吕婷婷,唐晓清,王康才,瞿光航,朱毅斌,李月鹏.追施氮肥量对菘蓝根的外形品质、干物质积累及活性成分含量的影响[J].植物营养与肥料学报,2014,20(2):437-444
    [11] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [12] 梁燕.不同氮素水平对苹果幼苗生长发育的影响[D].杨凌:西北农林科技大学,2015:6-7
    [13] 张云风,郭宝林,杨相波,李砾,姜志海,莫玉敏.水培条件下氮素对拟巫山淫羊藿产量和黄酮类成分的影响[J].中国中药杂志,2017,42(23):4574-4581
    [14] 卢丽兰,杨新全,杨勇,黄立标,王旭东.不同供氮水平对广藿香产量与品质的影响[J].植物营养与肥料学报,2014(3):702-708
    [15] 孙兴祥,王健,周毅,沈其荣.不同氮素水平对菠菜生长和品质的影响[J].南京农业大学学报,2005,20(3):126-128
    [16] 张梅,宋柏权,杨骥,闫志山,范有君,李建英.氮素对甜菜碳代谢产物的影响[J].中国农学通报,2016,32(3):66-70
    [17] 王业建.大豆对低氮胁迫的形态和生理学响应及介导低氮胁迫miRNA的鉴定[D].长沙:中南大学,2013:32-34
    [18] 匡鹤凌,汪贵斌,曹福亮.氮素对喜树光合作用、营养元素和喜树碱含量的影响[J].南京林业大学学报(自然科学版),2016,40(3):15-20
    [19] 李强,罗延宏,余东海,孔凡磊,杨世民,袁继超.低氮胁迫对耐低氮玉米品种苗期光合及叶绿素荧光特性的影响[J].植物营养与肥料学报,2015,21(5):1132-1141
    [20] 许楠,倪红伟,钟海秀,沙威,伍一宁,刑军会,孙广玉.不同供氮水平对饲料桑树幼苗生长以及光合特性的影响[J].江苏农业学报,2015,31(4):865-870
    [21] Farquhar G D,Sharkey T D.Stomatal conductance and photosynthesis [J].Annual Review of Plant Physiology,1982,33:317-345
    [22] 张阳,刘海涛,张昭,马春放,张志鹏,陈瑶.生物碱的生理生态功能及影响其形成的因素[J].中国农学通报,2014,30(28):251-254
    [23] 刘大会,郭兰萍,黄璐琦,金航,刘伟,朱端卫.矿质营养对药用植物黄酮类成分合成的影响[J].中国中药杂志,2010,35(18):2367-2371
    [24] 丁丽洁,李霞,刘强.氮素浓度对黄檗幼苗主要次生代谢产物的影响[J].人参研究,2013,25(4):39-41
    [25] 朱孟炎,于博帆,陈华峰.外源硝态氮水平对长春花生理代谢的影响[J].植物研究,2016,36(4):535-541
    [26] 孙世芹,阎秀峰.氮素水平对喜树幼苗喜树碱含量的影响[J].中国中药杂志,2008(4):356-359
    [27] Lillo C,Lea U S,Ruoff P.Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway[J].Plant Cell and Environment,2008,31(5):587-601
    [28] L?vdal T,Olsen K M,Slimestad R,Verheul M,Lillo C.Synergetic effects of nitrogen depletion,temperature,and light on the content of phenolic compounds and gene expression in leaves of tomato [J].Phytochemistry,2010,71(5/6):605-613
    [29] Liu W,Zhu D,Liu D,Geng M,Zhou W,Mi W.Influence of nitrogen on the primary and secondary metabolism and synthesis of flavonoids in Chrysanthemum morifolium ramat [J].Journal of Plant Nutrition,2010,33(2):240-254
    [30] 向达兵,赵江林,胡丽雪,赵钢.施氮量对苦荞麦生长发育、产量及品质的影响[J].广东农业科学,2013,40(14):57-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700