取代基和配体的负离子效应对(TPFC)Mn(Ⅴ)O轴向配位作用的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Substituents and Anionic Ligands on Axial Coordination of(TPFC) Mn(Ⅴ)O
  • 作者:徐艳 ; 章小慧 ; 徐志广 ; 陈华彬 ; 刘海洋
  • 英文作者:XU Yan;ZHANG Xiaohui;XU Zhiguang;CHEN Huabin;LIU Haiyang;School of Chemistry and Environment,South China Normal University∥Key Laboratory of Environmental Theory Chemistry,Ministry of Education;School of Chemistry and Chemical Engineering,South China University of Technology;
  • 关键词:密度泛函理论 ; 锰(Ⅴ)-氧咔咯 ; 轴向配位 ; 取代基效应 ; 配体负离子效应
  • 英文关键词:density functional theory;;manganese(Ⅴ)-oxygen corrole;;axial coordination;;substituent effect;;anionic ligand effect
  • 中文刊名:HNSF
  • 英文刊名:Journal of South China Normal University(Natural Science Edition)
  • 机构:华南师范大学化学与环境学院∥教育部环境理论化学重点实验室;华南理工大学化学与化工学院;
  • 出版日期:2019-04-03 13:39
  • 出版单位:华南师范大学学报(自然科学版)
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金项目(21275057,21671068);; 广东省自然科学基金项目(S2012010008763)
  • 语种:中文;
  • 页:HNSF201901006
  • 页数:7
  • CN:01
  • ISSN:44-1138/N
  • 分类号:33-39
摘要
采用密度泛函理论(DFT)的BP86方法对系列β位取代的锰(Ⅴ)-氧咔咯(TPFC) Mn(Ⅴ) O配合物与咪唑的轴向配位作用,以及无β位取代的(TPFC) Mn(Ⅴ) O与4-甲基咪唑和吡咯的轴向配位性质进行理论研究.计算结果显示:β位取代基吸电子性质和轴向配体负离子效应均能缩短配位键长并增强结合能,显著增强(TPFC) Mn(Ⅴ) O配合物的轴向配位作用,其中轴向配体负离子效应影响更加显著.通过自然键轨道(NBO)分析发现,这2种效应加强(TPFC) Mn(Ⅴ) O轴向配位作用的主要因素:配位氮原子的孤对电子轨道LP(N)与Mn原子的孤对电子轨道LP(Mn,4s)和锰氧反键轨道σ*(Mn≡O)间形成较大的二级微扰稳定化能E(2).
        The axial coordination of a series of β site substituted manganese(Ⅴ)-oxygen corrole( TPFC) Mn(Ⅴ) O with imidazole and the non β site substituted( TPFC) Mn(Ⅴ) O with 4-methyl imidazole and pyrrole were investigated using the BP86 method of the density functional theory( DFT). The calculation results show that the electronwithdrawing ability of the β-substituents and the anionic effect of the axial ligand can both result in a short length of coordination bond and the strong binding energy which significantly enhances the axial coordination interaction of the( TPFC) Mn(Ⅴ) O,especially the anionic effect of the axial ligand. As the natural bond orbital( NBO) analysis shows,the main factor for both effects on the axial coordination of( TPFC) Mn(Ⅴ) O is the strong second-order perturbation stabilization energy E( 2) that is formed between the lone-pair electron orbit of nitrogen on the axial ligand LP( N) and the lone-pair electron orbital of manganese LP( Mn,4 S) and the antibond orbital of manganese oxygen bond σ*( Mn≡O).
引文
[1] GROSS Z. High-valent corrole metal complexes[J].Journal of Biological Inorganic Chemistry,2001,6(7):733-738.
    [2] GROSS Z,GRAY H B. How do corroles stabilize high valent metals[J]. Comments on Inorganic Chemistry,2006,27(3/4):61-72.
    [3] AVIV I,GROSS Z. Corrole-based applications[J].Cheminform,2007,38(20):1987-1999.
    [4] LIU H Y,MAHMOOD M H,QIU S X,et al. Recent developments in Manganese corrole chemistry[J]. Coordination Chemistry Reviews,2013,257(7/8):1306-1333.
    [5] GROSS Z,GOLUBKOV G,SIMKHOVICH L. epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(V)corrole[J]. Angewandte Chemie International Edition,2000,39(22):4045-4047.
    [6] GROSS Z,SIMKHOVICH L,GALILI N. First catalysis by corrole Metal complexes:Epoxidation,hydroxylation,and Cyclopropanation[J]. Cheminform,1999,30(28):599-600.
    [7] KUMAR A,GOLDBERG I,BOTOSHANSKY M,et al.Oxygen atom transfer reactions from isolated(Oxo)Manganese(V)corroles to sulfides[J]. Journal of the American Chemical Society,2010,132(43):15233-15245.
    [8] BOSE S,PARIYAR A,BISWAS A N,et al. Electron deficient Manganese(III)corrole catalyzed oxidation of alkanes and Alkylbenzenes at room temperature[J]. Catalysis Communications,2011,12(23):1193-1197.
    [9] BOUWMAN E,REEDIJK J. Bioinorganic catalysis[M].2nd Edition. Boca Raton:CRC Press,1999.
    [10] MEUNIER B. Biomimetic oxidations catalyzed by transition metal complexes[M]. London:Imperial College Press,2000.
    [11] MEUNIER B. Metalloporphyrins in catalytic oxidations[M]. Bora Raton:CRC Press,1994.
    [12] YAGI M,KANEKO M. Molecular catalysts for water oxidation[J]. Chemical Reviews,2001,101(1):21-35.
    [13] PEREIRA M M,SIMOES M,NEVES M,et al. Mechanistic studies on metalloporphyrin epoxidation reactions with hydrogen peroxide:evidence for two active oxidative species[J]. Journal of Catalysis,2005,234(1):76-87.
    [14] LIU H Y,ZHOU H,LIU L Y,et al. The effect of axial ligand on the reactivity of Oxomanganese(V)Corrole[J].Chemistry Letters,2007,36(2):274-275.
    [15] GROSS Z,GALILI N,SALTSMAN I. The first direct synthesis of corroles from pyrrole[J]. Angewandte Chemie International Edition,1999,38(10):1427-1429.
    [16] GRYKO D T,KOSARNA B. Refined methods for the synthesis of meso-substituted A(3)-and trans-A(2)Bcorroles[J]. Organic&Biomolecular Chemistry,2003,1(2):350-357.
    [17] NG N C,MAHMOOD M H,LIU H Y,et al. Appended corrole manganese complexes:Catalysis and Axial-Ligand effect[J]. Chinese Chemical Letters,2014,25(4):571-574.
    [18] BALCEL,RAYNAUD D,CRABTREE C,et al. A rational basis for the Axial ligand effect in C-H oxidation by[MnO(Porphyrin)(X)]+(X=H2O,OH-,O2-)from a DFT study[J]. Inorganic Chemistry,2008,47(21):10090-10099.
    [19] NEU H,YANG T,BAGLIA R A,et al. Qxygen-atom transfer reactivity of axially ligated Mn-Oxo complexes:Evidence for enhanced electrophilic and nucleophilic pathways[J]. Journal of the American Chemical Society,2014,136(39):13845-13852.
    [20] GHOSH A,WONDIMAGEGN T,PARUSEL A B J. Electronic structure of Gallium,Copper and Nickel complexes of corrole. High-valent transition metal centers versus noninnocent ligands[J]. Journal of the American Chemical Society,2000,122(21):5100-5104.
    [21] ZHU C,LIANG J,WANG B,et al. Significant effect of spin flip on the oxygen atom transfer reaction from(Oxo)Manganese(V)corroles to thioanisole:Insights from density functional calculations[J]. Physical Chemistry Chemical Physics,2012,14(37):12800-12806.
    [22] GHOSH A,STEENE E. High-valent transition metal centers and noninnocent ligands in metalloporphyrins and related molecules:a broad overview based on quantum chemical calculations[J]. Journal of Biological Inorganic Chemist,2001,6(7):739-752.
    [23]陈华彬,章小慧,龚丽珍,等.β位取代基对咔咯锰(V)氧配合物电子吸收光谱的影响[J].物理化学学报,2016,32(8):1983-1989.CHEN H B,ZHANG X H,GONG L Z,et al. Effect ofβ-substituents on the electronic absorption spectra of Manganese(V)-Oxo corrole complexes[J]. Acta PhysicoChimica Sinica,2016,32(8):1983-1989.
    [24] NARDIS S,STEFANELLI M,MOHITE P,et al.β-Nitro derivatives of iron corrolates[J]. Inorganic Chemistry,2012,51(6):3910-3920.
    [25]龚丽珍,徐志广,许旋,等.咔咯锰与锰(V)-氧配合物与含氮轴向配体的轴向配位性质[J].物理化学学报,2014,30(2):265-272.GONG L Z,XU Z G,XU X,et al. Axial coordination nehavior of corrole mn and MnO complexes with N-based ligands[J]. Acta Physico-Chimica Sinica,2014,30(2):265-272.
    [26] REED A E,CURTISS L A,WEINHOLD F. Intermolecular lnteractions from a natural bond orbital,donor-acceptor viewpoint[J]. Chemical Reviews,1988,88(6):899-926.
    [27] FRISH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian09,Revision B.01[CP]. Gaussian Inc:Wallingford,CT,2010.
    [28]沈桂贤,徐志广,章小慧.血管紧张素Ⅰ和Ⅱ的N端三肽分子印迹预作用的理论研究[J].华南师范大学学报(自然科学版),2015,47(1):43-49.SHEN G X,XU Z G,GONG L Z. Theoretical researchon molecular imprinted polymer pre-actionwith the N-terminal tripetide of AngⅠand AngⅡ[J]. Journal of South China Normal University(Natural Science Edition),2015,47(1):43-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700