用户名: 密码: 验证码:
地铁隧道管片裂缝修补后的抗侵蚀性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Resistance of the Metro Tunnel Segments after Repairing of Segment Cracks
  • 作者:徐少云 ; 高培伟 ; 肖忠平 ; 赵向敏 ; 彭海龙 ; 陈卫峰
  • 英文作者:XU Shaoyun;GAO Peiwei;XIAO Zhongping;ZHAO Xiangmin;PENG Hailong;CHEN Weifeng;Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics;Institute of Architectural Engineering, Yangzhou Polytechnic Institute;The Communications Planning Surveying and Designing Institute of Shanxi Province;
  • 关键词:地铁隧道 ; 管片 ; 裂缝修补 ; 新型修补材料 ; 抗氯离子渗透性 ; 抗硫酸盐侵蚀
  • 英文关键词:Metro tunnel;;Segment;;Crack repairingn;;Innovative repairing material;;Resistance to chloride ion penetration;;Resistance against sulfate corrosion
  • 中文刊名:XDSD
  • 英文刊名:Modern Tunnelling Technology
  • 机构:南京航空航天大学土木工程系;扬州工业职业技术学院建筑工程学院;山西省交通规划勘察设计院;
  • 出版日期:2019-02-15
  • 出版单位:现代隧道技术
  • 年:2019
  • 期:v.56;No.384
  • 基金:江苏省六大人才团队(NRL-CXTD-007);; 山西省交通建设科技项目(16-2-08);; 中国博士后基金(2018M630559);; 扬州工业职业技术学院自然科技类2016年一般课题(2016xjzk016)
  • 语种:中文;
  • 页:XDSD201901026
  • 页数:6
  • CN:01
  • ISSN:51-1600/U
  • 分类号:165-169+174
摘要
地铁隧道管片在生产、施工和运营过程中均可能产生裂缝,而管片裂缝修补后的耐久性优劣直接影响隧道安全。文章通过模拟地铁管片裂缝,采用氯离子渗透试验和硫酸盐侵蚀试验,研究了新型修补材料NR修补不同管片裂缝后的抗侵蚀性能,并与常用环氧树脂修补材料EC进行了对比分析。结果表明:采用NR修补不同管片裂缝后其抗Cl-渗透性均明显提高,其中对C60混凝土管片修补效果好于C50混凝土管片;对掺聚丙烯纤维管片的修补效果好于未掺聚丙烯纤维的管片;对PFC50和C60混凝土管片的修补效果要优于EC材料。采用NR修补后管片的抗硫酸盐侵蚀能力略有下降,C60混凝土管片修补后的抗硫酸盐侵蚀的抗压和抗折强度降幅均较C50混凝土管片的小,且抗压强度修复效果优于抗折强度;掺聚丙烯纤维管片裂缝修补后的抗硫酸盐侵蚀的抗压和抗折强度降幅均较未掺聚丙烯纤维管片的小,且抗压强度修复效果优于抗折强度;对C50和PFC50混凝土管片抗硫酸盐侵蚀的抗压强度的修补效果要优于EC材料,且对3种混凝土管片抗硫酸盐侵蚀的抗折强度的修补效果均要优于EC材料。
        Cracks often occur during manufacturing,construction and operation of metro tunnel segments,and the durability of repaired segments has direct effect on tunnel safety.Simulating different subway tunnel segment crack patterns,using the chloride ion permeation test and sulfate attack test,it studied the erosion resistance of the tunnel segments after repairing various segment cracks with innovative repairing material NR,and a comparison with the commonly used epoxy resin repairing material EC was conducted,with the results show that the concrete resistance to chloride ion penetration increases significantly,the repairing effect of C60 segment is better than that of C50;the repairing effect of segment with polypropylene fiber is better than that of the segment without polypropylene fiber;the repairing effect of PFC50 and C60 segments is better compared with the repairing material EC;after using NR repairing material,the resistance to sulfate corrosion of segment decreases slightly,the decreasing amplitude of bending strength and compressive strength of the repaired C60 segment is smaller compared with that of C50 segment,and the remediation effect of compressive strength is better than that of bending strength;the decreasing amplitude of compressive strength and bending strength against sulfate corrosion of the segment with polypropylene fiber is smaller than the one without polypropylene fiber and the remediation effect of compressive strength is better than that of bending strength;compared with the EC repairing material,the remediation effect of compressive strength against sulfate corrosion of C50 and PFC50 concrete segments is better and the remediation effect of bending strength against sulfate corrosion of three kinds of concrete segments is better.
引文
[1]赖金星,邱军领,潘云鹏,等.盾构隧道管片裂缝病害的综合监测与分析[J].现代隧道技术, 2015, 52(2):186-191.LAI Jinxing, QIU Junling, PAN Yunpeng, et al. Comprehensive Monitoring and Analysis of Segment Cracking in Shield Tunnels[J].Modern Tunnelling Technology, 2015, 52(2):186-191.
    [2]张冬梅,刘印,黄宏伟.软土盾构隧道渗流引起的地层和隧道沉降[J].同济大学学报, 2013, 41(8):1185-1190+1212.ZHANG Dongmei, LIU Yin, HUANG Hongwei. Leaking-induced Settlement of Ground and Shield Tunnel in Soft Clay[J]. Journal ofTongji University, 2013, 41(8):1185-1190+1212.
    [3]王启耀,彭建兵,黄强兵.西安地铁二号线地裂缝段防水设计探讨[J].现代隧道技术, 2009, 46(1):71-75.WANGQiyao,PENGJianbing,HUANGQiangbing.StudyonWaterproofingofXi′anMetroLine2ontheSectionwithGroundFissures[J]. Modern Tunnelling Technology, 2009, 46(1):71-75.
    [4]唐春平.磷酸盐修补材料粘结强度影响因素研究[J].混凝土与水泥制品, 2012,(2):22-24.TANG Chunping. Study on the Influence Factor of Bonding Flexure Strength of Phosphate Repairing Material[J]. China Concreteand Cement Products, 2012,(2):22-24.
    [5]李岩凌,肖群芳,王婷,等. PVA自修复砂浆用于混凝土修补技术研究[J].新型建筑材料,2015,(10):25-28.LI Yanling, XIAO Qunfang, WANG Ting, et al. The Research of PVA Self-repair Mortar for Concrete Repair[J]. New Building Mate?rials, 2015,(10):25-28.
    [6]张西玲,姚爱玲,李铭,等.一种环保型混凝土路面修补材料的试验研究[J].硅酸盐通报,2011, 30(3):688-693.ZHANG Xiling, YAO Ailing, LI Ming, et al. Investigation on a Environmental-friendly Repairing Material of Concrete Pavement[J].Bulletin of the Chinese Ceramic Society, 2011, 30(3):688-693.
    [7] KNAPEN E, GEMERT D VAN. Polymer Film Formation in Cement Mortars Modified with Water-soluble Polymers[J]. Cement andConcrete Composites, 2015, 58:23-28.
    [8]鞠向伟,彭海龙,高培伟,等.适用于隧道混凝土裂缝修补的水性环氧树脂改性砂浆性能研究[J].隧道建设, 2016,(4):398-402.JU Xiangwei, PENG Hailong, GAO Peiwei, et al. Study of Properties of Modified Aqueous Epoxy Mortar Used in Rehabilitation ofTunnel Concrete Cracks[J]. Tunnel Construction,2016,(4):398-402.
    [9] CHRISTOF SCHRFL, VIKTOR MECHTCHERINE, MICHAELA GORGES. Relation between the Molecular Structure and the Effi?ciency of Superabsorbent Polymers(SAP)as Concrete Admixture to Mitigate Autogenous Shrinkage[J]. Cement and Concrete Re?search, 2012, 42:865-873.
    [10]王建辉,张浩博,桑国臣.混凝土裂缝修复材料的研究[J].新型建筑材料, 2012,(5):32-35.WANG Jianhui, ZHANG Haobo, SANG Guochen. Research on Concrete Crack Repair Material[J]. New Building Materials, 2012,(5):32-35.
    [11]叶娇凤.混凝土裂缝修补用长效抗冻融环氧树脂开发研究[D].兰州:兰州交通大学,2013.YE Jiaofeng. Study on Development of Long-term Freeze-thaw Resistant Epoxy Resin for Concrete Cracks Repairing[D]. Lanzhou:Lanzhou Jiaotong University, 2013.
    [12]冯英杰,张泽洲.压力注浆法修补混凝土裂缝的力学分析[J].公路工程, 2014,(1):242-245+262.FENG Yingjie, ZHANG Zezhou. Mechanical Analysis on Grouting Concrete Cracks with Pressure[J]. Highway Engineering, 2014,(1):242-245+262.
    [13]李军,吕子义,邓初琴.水下混凝土裂缝修补技术的进展[J].新型建筑材料, 2007,(10):9-12.LI Jun, LV Ziyi, DENG Chuqin. Recent Development of Technology for Repairing Underwater Concrete Cracks[J]. New BuildingMaterials, 2007,(10):9-12.
    [14] TAMIMI A K, ABDALLA J A, SAKKA Z I. Prediction of Long Term Chloride Diffusion of Concrete in Harsh Environment[J]. Con?struction and Building Materials, 2008, 22(5):829-836.
    [15] CHEN D, MAHADEVAN S. Chloride-induced Reinforcement Corrosion and Concrete Cracking Simulation[J]. Cement and Con?crete Composites, 2008, 30(3):227-238.
    [16] PEIWEI GAO, SHAOYUN XU, XIONG CHEN. Research on Autogenous Volume Deformation of Concrete with MgO[J]. Construc?tion and Building Materials, 2013,(40):998-1001.
    [17]曹征良,袁雄洲,邢锋,等.美国混凝土硫酸盐侵蚀试验方法评析[J].深圳大学学报(理工版), 2006, 23(3):54-57.CAO Zhengliang, YUAN Xiongzhou, XING Feng, et al. American Test Methods for Evaluating the Durability of Cement Based Ma?terials against External Sulfate Attack[J]. Journal of Shenzhen University(Science&Engineering), 2006, 23(3):54-57.
    [18] TIXIER R, MOBASHER B. Modeling of Damage in Cement Based Materials Subjected to External Sulphate Attack:Comparisonwith Experiments[J]. Journal of Materials in Civil Engineering, 2003, 15(4):314-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700