不同密度藻屑堆积下沉积物碳氮磷释放特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The releasing characteristics of carbon,nitrogen and phosphorus from sediment under the influence of different densities of algal detritus
  • 作者:王亚蕊 ; 陈向超 ; 付绪金 ; 钟继承 ; 陈开宁 ; 王城新 ; 冯慕华
  • 英文作者:WANG Yarui;CHEN Xiangchao;FU Xujin;ZHONG Jicheng;CHEN Kaining;WANG Chengxin;FENG Muhua;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Tianjin Hydraulic Research Institute;Nanjing Institute of Technology;
  • 关键词:蓝藻水华 ; 沉积物 ; 营养盐 ; 溶解性有机碳 ; 于桥水库 ; 藻屑堆积
  • 英文关键词:Cyanobacterial bloom;;sediments;;nutrients;;dissolved organic carbon;;algae detritus
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;中国科学院大学;天津市水利科学研究院;南京工程学院;
  • 出版日期:2018-07-06
  • 出版单位:湖泊科学
  • 年:2018
  • 期:v.30
  • 基金:国家自然科学基金项目(41471075,41171366);; 国家水体污染控制与治理科技重大专项(2017ZX07603-005);; 江苏省高校水处理技术与材料协同创新中心项目;; 天津市水务局于桥水库专项课题联合资助
  • 语种:中文;
  • 页:FLKX201804007
  • 页数:12
  • CN:04
  • ISSN:32-1331/P
  • 分类号:63-74
摘要
蓝藻碎屑分解引起氮磷释放已受到广泛关注,但堆积的藻屑与沉积物交互作用引发污染物释放的效应知之甚少.采集于桥水库沉积物柱状样,设置5个藻屑添加组和对照组(无藻屑添加),恒温培养(27±1℃),模拟夏季温度条件下不同密度藻屑堆积下沉积物中碳氮磷释放特征.结果表明:藻屑堆积后加强了上覆水中溶解氧与硝态氮的消耗,5个藻屑添加组18小时后上覆水均处于厌氧状态.各实验组上覆水中的溶解性有机碳(DOC)浓度在第3小时增加,且SUVA254值处于0.54~1.74 L/(mg·m)之间,说明DOC可能来源于藻源性释放.各藻屑添加组培养过程中上覆水的溶解性有机氮(DON)、铵态氮和正磷酸盐浓度持续增加,最高平均释放速率分别达4.44、0.20和0.03 mg/(L·h),分别为对照组的21.73、1.76和67.58倍;其中DON为溶解性总氮主要存在形态,在实验结束时DOC/DON比值降低,说明藻屑或者沉积物有机质短期内并未完全矿化,且DOC优先DON被微生物利用.因此蓝藻碎屑堆积增强了沉积物需氧量,加快沉积物与水之间的氮磷营养盐、DOC循环,从而对沉积物中污染物地球化学循环过程造成进一步的影响.
        The release of nutrients caused by the algae detritus decomposition has been widely studied,however,little is known about the mechanism of pollutants release induced by the interaction of accumulated algae detritus with sediments. In order to simulate the release characteristics of nutrients after different density algal debris settled on sediments on the summer temperature condition,sediments cores were sampled from Yuqiao Reservoir Watershed and cultured with five density gradients addition treatments and control without algal detritus under constant temperature condition( 27±1℃). Results showed that algal detritus enhanced oxygen consumption and nitrate reduction,and overlying water in addition treatments reached anaerobic condition after the incubation time of 18 hours. The concentration of dissolved organic carbon( DOC) in each addition treatment increased in three hours and the value of SUVA254 varied between 0.54-1.74 L/( mg·m),suggested that DOC was mainly derived from algal detritus decomposition. The concentrations of dissolved organic nitrogen( DON),ammonia nitrogen and phosphate in five addition treatments increased gradually with the release rates of 4. 44 mg/( L·h),0. 20 mg/( L·h) and 0. 025 mg/( L·h),respectively,and was21.73,1.76,67.58 times of the release rates of control,respectively. DON was the main form of dissolved total nitrogen( DTN).Subsequently,the decrease of DOC/DON at the end of incubation suggested that algal detritus and sediments organic matter were not completely mineralized in which DOC took priority over DON being consumed by microorganisms. In general,accumulated algal detritus strengthen benthic oxygen demand and then accelerate the microbial geochemical cycle of nutrients and DOC between the interface of water and sediment.
引文
[1]Xu HC,Cai HY,Yu GH et al.Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis.Water Research,2013,47(6):2005-2014.DOI:10.1016/j.watres.2013.01.019.
    [2]Chen BF,Feng MH,Shang LX et al.Effects on cyanobacterial growth and water quality after harvesting accumulated cyanobacteria in autumn:An in-situ experiment in Lake Chaohu.J Lake Sci,2016,28(2):253-262.DOI:10.18307/2016.0203.[陈丙法,冯慕华,尚丽霞等.秋季聚积蓝藻打捞对蓝藻生长及水质影响的原位实验.湖泊科学,2016,28(2):253-262.]
    [3]Zhu MY,Zhu GW,Zhao LL et al.Influence of algal bloom degradation on nutrient release at the sediment-water interface in Lake Taihu,China.Environmental Science and Pollution Research,2013,20(3):1803-1811.DOI:10.1007/s11356-012-1084-9.
    [4]Shang LX,Ke F,Li WC et al.Laboratory research on the contaminants release during the anaerobic decomposition of highdensity cyanobacteria.J Lake Sci,2013,25(1):47-54.DOI:10.18307/2013.0101.[尚丽霞,柯凡,李文朝等.高密度蓝藻厌氧分解过程与污染物释放实验研究.湖泊科学,2013,25(1):47-54.]
    [5]Hansen LS,Blackburn TH.Effect of algal bloom deposition on sediment respiration and fluxes.Marine Biology,1992,112(1):147-152.
    [6]Yu JL,Li YM,Liu XL et al.The fate of cyanobacterial detritus in the food web of Lake Taihu:A mesocosm study using C-13 and N-15 labeling.Hydrobiologia,2013,710(1):39-46.DOI:10.1007/s10750-012-1205-y.
    [7]Ask J,Karlsson J,Persson L et al.Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes.Ecology,2009,90(7):1923-1932.DOI:10.1890/07-1855.1.
    [8]Valdemarsen T,Quintana CO,Flindt MR et al.Organic N and P in eutrophic fjord sediments-rates of mineralization and consequences for internal nutrient loading.Biogeosciences,2015,12(6):1765-1779.DOI:10.5194/bg-12-1765-2015.
    [9]Buchan A,Le Cleir GR,Christopher AG et al.Master recyclers:features and functions of bacteria associated with phytoplankton blooms.Nature Reviews Microbiology,2014,12(10).DOI:10.1038/nrmicro3326.
    [10]Li K,Guan BH,Liu ZW.Experiments on decomposition rate and release forms of nitrogen and phosphorus from the decomposing cyanobacterial detritus.J Lake Sci,2011,23(6):919-925.DOI:10.18307/2011.0614.[李柯,关保华,刘正文.蓝藻碎屑分解速率及氮磷释放形态的实验分析.湖泊科学,2011,23(6):919-925.]
    [11]Garcia-Robledo E,Corzo A.Effects of macroalgal blooms on carbon and nitrogen biogeochemical cycling in photoautotrophic sediments:an experimental mesocosm.Marine Pollution Bulletin,2011,62(7):1550-1556.DOI:10.1016/j.marpolbul.2011.03.044.
    [12]Corzo A,Van Bergeijk SA,Garcia-Robledo E.Effects of green macroalgal blooms on intertidal sediments:net metabolism and carbon and nitrogen contents.Marine Ecology Progress Series,2009,380:81-93.DOI:10.3354/meps07923.
    [13]Henderson RK,Baker A,Parsons SA et al.Characterisation of algogenic organic matter extracted from cyanobacteria,green algae and diatoms.Water Research,2008,42(13):3435-3445.DOI:10.1016/j.watres.2007.10.032.
    [14]Neubauer ATA,Pedersen AGU,Finster K et al.Benthic decomposition of Zostera marina roots:A controlled laboratory experiment.Journal of Experimental Marine Biology and Ecology,2004,313(1):105-124.DOI:10.1016/j.jembe.2004.08.003.
    [15]Shao KQ,Gao G,Chi KX et al.Decomposition of Microcystis blooms:Implications for the structure of the sediment bacterial community,as assessed by a mesocosm experiment in Lake Taihu,China.Journal of Basic Microbiology,2013,53(6):549-554.DOI:10.1002/jobm.201100532.
    [16]Valdemarsen T,Kristensen E,Holmer M.Metabolic threshold and sulfide-buffering in diffusion controlled marine sediments impacted by continuous organic enrichment.Biogeochemistry,2009,95(2/3):335-353.DOI:10.1007/s10533-009-9340-x.
    [17]Tyler AC,Mc Glathery KJ,Anderson IC.Benthic algae control sediment-water column fluxes of organic and inorganic nitrogen compounds in a temperate lagoon.Limnology and Oceanography,2003,48(6):2125-2137.DOI:10.4319/lo.2003.48.6.2125.
    [18]Lomstein B,Guldberg LB,Neubauer Anne-Turi A et al.Benthic decomposition of Ulvalactuca:A controlled laboratory experiment.Aquatic Botany,2006,85(4):271-281.DOI:10.1016/j.aquabot.2006.05.006.
    [19]Sundbck K,Miles A,Hulth S et al.Importance of benthic nutrient regeneration during initiation of macroalgal blooms in shallow bays.Marine Ecology Progress Series,2003,246:115-126.
    [20]Wang YR,Chen XC,Chen BF et al.The release effect of pollutants in sediment-water interface after algal-debris accumulated on sediments.Acta Scientiae Circumstantiae,2017,(2):1-18.DOI:10.13671/j.hjkxxb.2017.0279.[王亚蕊,陈向超,陈丙法等.藻屑堆积对沉积物-水界面污染物的释放效应.环境科学学报,2017,(2):1-18.]
    [21]Ministry of Environmental Protection of the People’s Republic of China,Editorial Board of Water and Wastewater Monitoring and Analysis Methods eds.Water and Wastewater Monitoring and Analysis Methods:4th edition.Beijing:China Environmental Science Press,2002:243-250,254-257,670-671.[国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法:第4版.北京:中国环境科学出版社,2002:243-250,254-257,670-671.]
    [22]Yang LY,Choi JH,Hur J.Benthic flux of dissolved organic matter from lake sediment at different redox conditions and the possible effects of biogeochemical processes.Water Research,2014,61:97-107.DOI:10.1016/j.watres.2014.05.009.
    [23]Zhang X,Zheng JW,Zhou MF et al.Effect of increasing nitrogen/phosphours ratio in loading on the growth on Vallisneria spinulosa.J Lake Sci,2017,29(4):880-886.DOI:10.18307/2017.0411.[张雪,郑建伟,周茂飞等.外源氮磷负荷比增加对刺苦草(Vallisneria spinulosa)生长的影响.湖泊科学,2017,29(4):880-886.]
    [24]Morrison JM,Murphy CL,Baker K et al.Microbial communities mediating algal detritus turnover under anaerobic conditions.Peer J,2017,5:e2803.DOI:10.7717/peerj.2803.
    [25]Garc'ia-Robledo E,Corzo A,de Lomas JG et al.Biogeochemical effects of macroalgal decomposition on intertidal microbenthos:A microcosm experiment.Marine Ecology Progress Series,2008,356:139-151.DOI:10.3354/meps07287.
    [26]Reed DC,Rassweiler A,Arkema KK.Biomass rather than growth rate determines variation in net primary production by giant kelp.Ecology,2008,89(9):2493-2505.DOI:10.1890/07-1106.1.
    [27]Castaldelli G,Welsh DT,Flachi G et al.Decomposition dynamics of the bloom forming macroalga Ulvarigida C.Agardh determined using a 14C-carbon radio-tracer technique.Aquatic Botany,2003,75(2):111-122.DOI:10.1016/S0304-3770(02)00167-5.
    [28]Wickland KP,Neff JC,Aiken GR.Dissolved organic carbon in Alaskan boreal forest:Sources,chemical characteristics,and biodegradability.Ecosystems,2007,10(8):1323-1340.DOI:10.1007/s10021-007-9101-4.
    [29]Li D,Sharp JO,Saikaly PE et al.Dissolved organic carbon influences microbial community composition and diversity in managed aquifer recharge systems.Applied and Environmental Microbiology,2012,78(19):6819-6828.DOI:10.1128/AEM.01223-12.
    [30]Gobler CJ,Sanudo-Wilhelmy SA.Cycling of colloidal organic carbon and nitrogen during an estuarine phytoplankton bloom.Limnology and Oceanography,2003,48(6):2314-2320.DOI:10.4319/lo.2003.48.6.2314.
    [31]Weishaar JL,Aiken GR,Bergamaschi BA et al.Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon.Environmental Science&Technology,2003,37(20):4702-4708.DOI:10.1021/es030360x.
    [32]Hong HC,Mazumder A,Wong MH et al.Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells,and its prediction via algal cellular biochemical composition.Water Research,2008,42(20):4941-4948.DOI:10.1016/j.watres.2008.09.019.
    [33]Barber A,Lalonde K,Mucci A et al.The role of iron in the diagenesis of organic carbon and nitrogen in sediments:A long-term incubation experiment.Marine Chemistry,2014,162:1-9.DOI:10.1016/j.marchem.2014.02.007.
    [34]Mulholland MR,Gobler CJ,Lee C.Peptide hydrolysis,amino acid oxidation,and nitrogen uptake in communities seasonally dominated by Aureococcus anophagefferens.Limnology and Oceanography,2002,47(4):1094-1108.DOI:10.4319/lo.2002.47.4.1094.
    [35]Feng MH,Ngwenya BT,Wang L et al.Bacterial dissolution of fluorapatite as a possible source of elevated dissolved phosphate in the environment.Geochimicaet Cosmochimica Acta,2011,75(19):5785-5796.DOI:10.1016/j.gca.2011.07.019.
    [36]Rysgaard S,Risgaard-Petersen N,Peter S et al.Oxygen regulation of nitrification and denitrification in sediments.Limnology and Oceanography,1994,39(7):1643-1652.DOI:10.4319/lo.1994.39.7.1643.
    [37]García-Robledo E,Revsbech NP,Risgaard-Petersen N et al.Changes in N cycling induced by Ulva detritus enrichment of sediments.Aquatic Microbial Ecology,2013,69(2):113-122.DOI:10.3354/ame01626.
    [38]Chen M,Ye TR,Krumholz LR et al.Temperature and cyanobacterial bloom biomass influence phosphorous cycling in eutrophic lake sediments.PLo S One,2014,9(3):e93130.DOI:10.1371/journal.pone.0093130.
    [39]Zhang L,Liao QJH,Gu XZ et al.Oxygen and phosphorus dynamics in freshwater sediment after the deposition of flocculated cyanobacteria and the role of tubificid worms.Journal of Hazardous Materials,2014,266:1-9.DOI:10.1016/j.jhazmat.2013.12.008.
    [40]Aminot A,Kérouel R.Dissolved organic carbon,nitrogen and phosphorus in the NE Atlantic and the NW Mediterranean with particular reference to non-refractory fractions and degradation.Deep Sea Research Part I:Oceanographic Research Papers,2004,51(12):1975-1999.DOI:10.1016/j.dsr.2004.07.016.
    [41]Mort HP,Slomp CP,Gustafsson BG et al.Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions.Geochimicaet Cosmochimica Acta,2010,74(4):1350-1362.DOI:10.1016/j.gca.2009.11.016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700