低截取比下复合抛物面聚光器的光热性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photothermal Properties of Compound Parabolic Concentrator Under Low Interception Ratio
  • 作者:吴德众 ; 李明 ; 李国良 ; 王云峰 ; 冯志康 ; 周国富
  • 英文作者:Wu Dezhong;Li Ming;Li Guoliang;Wang Yunfeng;Feng Zhikang;Zhou Guofu;Solar Energy Research Institute,Yunnan Normal University;School of Physics and Electronic Information,Yunnan Normal University;South China Advanced Optoelectronics Research Institute,South China Normal University;
  • 关键词:光学设计 ; 接收器 ; 光学效率 ; 复合抛物面聚光集热系统 ; 二维光线追踪
  • 英文关键词:optical design;;receiver;;optical efficiency;;compound parabolic concentrating heat collector system;;two-dimensional ray tracing
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:云南师范大学太阳能研究所;云南师范大学物理与电子信息学院;华南师范大学华南先进光电子研究院;
  • 出版日期:2018-11-13 10:10
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.643
  • 基金:国家自然科学基金(51466017);; 中国-老挝可再生能源联合实验室(2015DFA60120);; 云南省周国富专家工作站项目
  • 语种:中文;
  • 页:JGDJ201908024
  • 页数:8
  • CN:08
  • ISSN:31-1690/TN
  • 分类号:201-208
摘要
考虑复合抛物面聚光器(CPC)的经济性和光学性能,对CPC结构进行了优化设计。根据参数方程,分析了相同面积内的截取比对CPC总弧长和接收管数量的影响。研究结果表明,CPC截取比取0.15~0.25时,可有效降低对CPC弧面材料的使用。基于Tracepro软件,实现了对CPC的二维光线追踪,提出了一种CPC直射光学效率的模拟计算方法。选择1月1日、4月1日、7月1日、10月1日四个季节日期为模拟日期,模拟结果显示,截取比为0.16的CPC相较于截取比为0.56的CPC,平均直射光学效率分别提高了13.77%,15.24%,9.30%,11.54%。太阳高度角的增加和方位角的减小有利于降低CPC的末端光线损失。增加CPC的长度有利于减小末端光线损失对CPC光学效率的影响。实验测试验证了模拟的正确性,所提方法可应用于以提高光学性能为目标的CPC结构优化设计。
        Aiming at the economic and optical performances of the compound parabolic concentrator(CPC),the CPC structural design is optimized.According to the parameter equation,the effect of the intercept ratio for the same area on the total CPC arc length and the number of receiving tubes is analyzed.The research results show that an intercept ratio value of 0.15-0.25 for CPC can effectively reduce the use of CPC arc surface material.Based on the Tracepro software,twodimensional ray tracing of CPC is implemented,and a simulation and calculation method for the direct optical efficiency of CPC is proposed.Four seasonal dates,January 1,April 1,July 1,and October 1,are selected as the simulation dates.The simulation results show that the average direct optical efficiencies of CPC with an interception ratio of 0.16 are 13.77%,15.24%,9.30%and 11.54% higher than those of CPC with an interception ratio of 0.56,respectively.The increase of solar altitude angle and the decrease of azimuth angle are both helpful to reduce the end ray loss of CPC.The increase of the CPC length is helpful to reduce the effect of terminal light loss on CPC optical efficiency.The experimental results confirm the correctness of the simulation ones.The proposed method can be applied to the optimization design of a CPC structure for the improvement of optical performances.
引文
[1] Reichl C,Hengstberger F,Zauner C.Heat transfer mechanisms in a compound parabolic concentrator:comparison of computational fluid dynamics simulations to particle image velocimetry and local temperature measurements[J].Solar Energy,2013,97(5):436-446.
    [2] Yang M,Pei G,Li G Q,et al.Experimental comparison of compound parabolic concentrator with three low concentration ratio[J]. Acta Energiae Solaris Sinica,2017,38(2):431-437.杨明,裴刚,李桂强,等.三种低倍聚光比的CPC的实验对比研究[J].太阳能学报,2017,38(2):431-437.
    [3] Kalogirou S.The potential of solar industrial process heat applications[J].Applied Energy,2003,76(4):337-361.
    [4] Abdullahi B,Al-Dadah R K,Mahmoud S,et al.Optical and thermal performance of double receiver compound parabolic concentrator[J]. Applied Energy,2015,159(4):1-10.
    [5] Liu L Z,Li J H. The optical performance of compound parabolic concentrators(CPC)[J].Energy Technology,2006,27(2):52-56.刘灵芝,李戬洪.复合抛物面聚光器(CPC)光学分析研究[J].能源技术,2006,27(2):52-56.
    [6] Zhang X W,You S J,Zhang H.Research on thermal performance of serpentine compound parabolic concentrator solar collector[J].Acta Energiae Solaris Sinica,2013,34(8):1398-1403.张晓伟,由世俊,张欢.蛇形复合抛物面太阳集热器的热力性能研究[J].太阳能学报,2013,34(8):1398-1403.
    [7] Yu L,Wang J,Zhang Y M.Optical analysis of heatpipe evacuated tubular solar collector with inner CPC[J].Acta Energiae Solaris Sinica,2012,33(8):1392-1397.余雷,王军,张耀明.内聚光CPC热管式真空集热管的光学效率分析[J].太阳能学报,2012,33(8):1392-1397.
    [8] Feng Z K,Li M,Wang Y F,et al.Study on optical efficiency characteristics of receivers in a solar parabolic trough concentrator[J].Acta Optica Sinica,2016,36(1):0122002.冯志康,李明,王云峰,等.太阳能槽式系统接收器光学效率的特性研究[J].光学学报,2016,36(1):0122002.
    [9] Tchinda R,Kaptouom E,Njomo D.Study of the CPC collector thermal behavior[J]. Energy Conversion and Management,1998,39(13):1395-1406.
    [10] Waghmare S A,Gulhane N P.Design and ray tracing of a compound parabolic collector with tubular receiver[J].Solar Energy,2016,137:165-172.
    [11] Liu Z H,Tao G D,Lu L,et al.A novel all-glass evacuated tubular solar steam generator with simplified CPC[J]. Energy Conversion and Management,2014,86(5):175-185.
    [12] Bellos E,Korres D,Tzivanidis C,et al.Design,simulation and optimization of a compound parabolic collector[J].Sustainable Energy Technologies and Assessments,2016,16:53-63.
    [13] Tian Q.A study on CPC thermal property and application in low or medium temperature range[D].Nanjing:Southeast University,2016:21-27.田权.CPC太阳能集热器的集热性能及其在中低温领域的应用研究[D].南京:东南大学,2016:21-27.
    [14] Su Z Y,Gu S Y,Wang J,et al.Simulation of optical performance for compound parabolic solar collector[J].Acta Energiae Solaris Sinica,2017,38(9):2448-2453.苏中元,顾晟彦,王军,等.复合抛物面集热器光学模拟[J].太阳能学报,2017,38(9):2448-2453.
    [15] Tang R S,Lu E R.The optimal tilt angle of collectors[J].Acta Energiae Solaris Sinica,1988,9(4):369-376.唐润生,吕恩荣.集热器最佳倾角的选择[J].太阳能学报,1988,9(4):369-376.
    [16] Yang M.Comparative study on three CPC of low concentration ratio[D].Hefei:University of Science and Technology of China,2015:25-29.杨明.三种低倍聚光比CPC的对比研究[D].合肥:中国科学技术大学,2015:25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700