强度、刚度与模态约束下的FSC赛车车架轻量化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lightweight on Frame of FSC with Constriants of Strength,Stiffness and Modal
  • 作者:马芳武 ; 陈实现 ; 赵花垒 ; 左文杰 ; 路洪洲 ; 吴量
  • 英文作者:MA Fangwu;CHEN Shixian;ZHAO Hualei;ZUO Wenjie;LU Hongzhou;WU Liang;State Key Laboratory of Automotive Simulation and Control,Jilin University;CITIC-CBMM Microalloying Technology Center;
  • 关键词:FSC车架 ; 轻量化设计 ; 序列线性规划 ; 灵敏度
  • 英文关键词:FSC frame structure;;lightweight;;sequential linear programming;;sensitivity analysis
  • 中文刊名:HNDX
  • 英文刊名:Journal of Hunan University(Natural Sciences)
  • 机构:吉林大学汽车仿真与控制国家重点实验室;中信微合金化技术中心;
  • 出版日期:2018-04-25
  • 出版单位:湖南大学学报(自然科学版)
  • 年:2018
  • 期:v.45;No.292
  • 基金:国家重点研发计划资助项目(2016YFB0101601);; 吉林省省校共建计划专项项目(SXGJQY2017-7)~~
  • 语种:中文;
  • 页:HNDX201804003
  • 页数:8
  • CN:04
  • ISSN:43-1061/N
  • 分类号:23-30
摘要
研究了在满足频率、强度、刚度约束的前提下,通过尺寸优化实现中国大学生方程式大赛(FSC)赛车车架的轻量化设计.首先,根据FSC规则要求建立车架的有限元模型.其次,设置5种静态特性分析工况、5个重要部位的刚度分析工况与前六阶自由模态分析工况对车架结构进行性能分析,构建以质量响应最小为优化目标,以材料的许用应力、重要部位的许用刚度和发动机的激振频率为约束条件,以车架管厚为设计变量的尺寸优化模型.最后,通过序列线性规划对非线性优化模型进行近似求解,取得了良好的轻量化效果:FSC赛车车架降重5.34kg,减重15.7%.
        To realize the lightweight design of the Formula Student China's(FSC)frame structure,the geometry optimization is performed with the concern of modal,strength and stiffness constraints.Firstly,a finite element model of the frame is built based on the FSC rules.Subsequently,five types of static characteristic analysis conditions,five types of stiffness analysis conditions of important parts and six free modal analysis conditions are conducted for performance analysis of the frame structure.The size optimization model is set up with minimizing mass as the objective,the allowable stress of materials,allowable stiffness of important parts and excitation modal of the engine as the constraints,and the frame tube thickness as the design variable.Finally,approximate solution is acquired by sequential linear programming with nonlinear optimization model.A good lightweight result is obtained.The weight of the FSC frame decreases by 5.34 kg with a reduction rate of 15.7%.
引文
[1]赵帅,隰大帅,王世朝,等.FSAE赛车车架的强度和刚度分析[J].计算机辅助工程,2011,20(4):53-56.ZHAO Shuai,XI Dashuai,WANG Shichao,et al.Strength and stiffness analysis on FSAE racing car frame[J].Computer Aided Engineering,2011,20(4):53-56.(In Chinese)
    [2]赵诚,王国权,姜立嫚,等.FSAE方程式赛车车架结构强度试验[J].北京信息科技大学学报(自然科学版),2013,28(3):43-48.ZHAO Cheng,WANG Guoquan,JIANG Liman,et al.A study on structure strength test of FSAE formula car frame[J].Journal of Beijing Information Science&Technology University,2013,28(3):43-48.(In Chinese)
    [3]李芳,何婷婷.FSAE赛车车架结构的拓扑优化设计[J].浙江工业大学学报,2016,44(4):369-374.LI Fang,HE Tingting.Topology optimization of FSAE car frame[J].Journal of Zhejiang University of Technology,2016,44(4):369-374.(In Chinese)
    [4]SLIMARIK D,BAUER F.Design of tubular space frame for formula student race car[C]//20th International PhD Students Conference.Mendel University,2013:862-866.
    [5]郑文杰,兰凤崇,陈吉清.FSAE赛车车架结构拓扑优化及轻量化设计研究[J].汽车工程学报,2016,6(1):35-42.ZHENG Wenjie,LAN Fengchong,CHEN Jiqing.Research on topology optimization and lightweight design for frame structure of FSAE racing car[J].Journal of Automotive Engineering,2016,6(1):35-42.(In Chinese)
    [6]周永光,阳林,吴发亮,等.FSAE赛车车架结构优化和轻量化[J].农业装备与车辆工程,2012,50(11):37-41.ZHOU Yongguang,YANG Lin,WU Faliang,et al.The structure optimization and lightweight of FSAE car frame[J].Agricultural Equipment and Vehicle Engineering,2012,50(11):37-41.(In Chinese)
    [7]朱国华,成艾国,王振,等.电动车轻量化复合材料车身骨架多尺度分析[J].机械工程学报,2016,52(6):145-152.ZHOU Guohua,CHENG Aiguo,WANG Zhen,et al.Analysis of lightweight composite body structure for electrical vehicle using the multiscale approach[J].Journal of Mechanical Engineering,2016,52(6):145-152.(In Chinese)
    [8]DAVIES H C,BRYANT M,HOPE M,et al.Design,development,and manufacture of an aluminium honeycomb sandwich panel monocoque chassis for formula student competition[J].Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering,2011,226(3):325-337.
    [9]WANG Jianfeng,YANG Na,ZHAO Jinghui,et al.Design and experimental verification of composite impact attenuator for racing vehicles[J].Composite Structures,2016,141:39-49.
    [10]CHEN Wei,ZUO Wenjie.Component sensitivity analysis of conceptual vehicle body for lightweight design under static and dynamic stiffness demands[J].lnternational Journal of Vehicle Design,2014,66(2):107-123.
    [11]ZUO Wenjie.An object-miented graphics interface design and optimization software for cross-sectional shape of automobile body[J].Advances in Engineering Software,2013,64(5):1-10.
    [12]ZUO Wenjie.Bi-level optimization for the cross-sectional shape of a thin-walled car body frame with static stiffness and dynamic frequency stiffness constraints[J].Proceedings of the lnstitution of Mechanical Engineers Part D Journal of Automobile Engineering,2015,229(8):1046-1059.
    [13]张伟,侯文彬,胡平.基于拓扑优化的电动汽车白车身优化设计[J].湖南大学学报(自然科学版),2014,41(10):42-48.ZHANG Wei,HOU Wenbin,HU Ping.The body in white optimization of an electric vehicle using topology optimization[J].Journal of Hunan University(Natural Sciences),2014,41(10):42-48.(In Chinese)
    [14]左文杰,陈继顺,李亦文,等.刚度、强度与频率约束下的白车身板厚尺寸优化[J].汽车工程,2017,39(2):145-149.ZUO Wenjie,CHEN Jishun,LI Yiwen,et al.Size optimization on plate thickness of BIW with constraints of stiffness,strength and frequency[J].Automotive Engineering,2017,39(2):145-149.(In Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700