外源硅对干旱胁迫下烟草幼苗生长、叶片光合及生理指标的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Exogenous Silicon on Growth,Leaf Photosynthesis and Physiological Indexes of Tobacco Seedlings Under Drought Stress
  • 作者:张环纬 ; 陈彪 ; 温心怡 ; 张杰 ; 王小东 ; 李继伟 ; 许自成 ; 黄五星
  • 英文作者:ZHANG Huan-wei;CHEN Biao;WEN Xin-yi;ZHANG Jie;WANG Xiao-dong;LI Ji-wei;XU Zi-cheng;HUANG Wu-xing;College of Tobacco Sciences,Henan Agricultural University;College of Agricultural/College of Tree Peony,Henan University of Science and Technology;Institute of Soil and Water Conservation,CAS & MWR;
  • 关键词:外源硅 ; 干旱 ; 烟草幼苗 ; 叶片光合 ; 生理指标
  • 英文关键词:exogenous silicon;;drought;;tobacco seedlings;;leaf photosynthesis;;physiological indicators
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:河南农业大学烟草学院;河南科技大学农学院牡丹学院;中国科学院水利部水土保持研究所;
  • 出版日期:2018-09-12 16:34
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.318
  • 基金:河南省教育厅高等学校重点科研项目(17A210020)
  • 语种:中文;
  • 页:SWJT201901005
  • 页数:10
  • CN:01
  • ISSN:11-2396/Q
  • 分类号:23-32
摘要
采用营养液水培法,研究了施用不同浓度外源硅(0、0.5、1.0 mmol/L)对干旱胁迫(10%PEG、20%PEG)下烟草幼苗生长、叶片光合特性和生理指标的影响。结果表明:干旱胁迫严重抑制了烟草幼苗生长和光合作用,膜质稳定性降低和引起氧化应激反应;施用不同浓度外源硅有效改善了干旱胁迫下烟草幼苗生长,均表现为株高、叶面积、根系体积、根系干重和地上部干重等生长指标增加,提高叶绿素a、叶绿素b、叶绿素a+b和类胡萝卜素含量,显著提高净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)并降低胞间CO2浓度(Ci),膜质过氧化产物MDA含量显著降低,提高叶片含水量、膜稳定性系数和渗透调节物质(脯氨酸、可溶性糖)含量,显著提高SOD、POD和CAT等抗氧化酶活性,而且1.0 mmol/L Si处理对干旱胁迫下烟草幼苗生长和生理特性的影响显著优于0.5 mmol/L Si处理。以上结果说明,施用外源硅能提高干旱胁迫下烟草幼苗光合作用、抗氧化和渗透调节能力,缓解干旱胁迫对烟草幼苗的伤害,促进其生长。
        The effects of different concentrations of exogenous silicon(0,0.5,and 1.0 mmol/L)on the growth,Leaf photosyntheticcharacteristics and physiological indexes of tobacco seedlings under drought stress(10% PEG and 20% PEG)were studied using nutrientsolution culture method. The results showed that drought stress severely inhibited the growth and photosynthesis of tobacco seedlings,anddecreased membrane stability and induced oxidative stress response. Application of different concentrations of exogenous silicon effectivelyimproved the growth of tobacco seedlings under drought stress,showing that the growth indices such as plant height,leaf area,rootvolume,dry weight of root and shoot increased;the contents of chlorophyll a,chlorophyll b,chlorophyll a+b,and carotenoids increased;the net photosynthetic rate(Pn)and transpiration rate(Tr)and stomatal conductance(Gs)significantly increased,while intercellularCO2 concentration(Ci)decreased;MDA content of membrane peroxidation product significantly reduced;and water content of leaves,membrane stability coefficient,and osmotic adjustment substance(proline and soluble sugar)content significantly increased. The activities ofantioxidative enzymes such as SOD,POD and CAT increased. The 1.0 mmol/L Si treatment significantly affected the growth and physiologicalcharacteristics of tobacco seedlings under drought stress better than 0.5 mmol/L Si treatment. All above results revealed that the application ofexogenous silicon may improve the photosynthesis,antioxidation and osmotic adjustment ability of tobacco seedlings under drought stress,relieve drought damage on tobacco seedlings,and promote its growth.
引文
[1]Rang ZW, Jagadish SVK, Zhou QM, et al. Effect of high temperatureand water stress on pollen germination and spikelet fertility inrice[J]. Environ Exp Bot, 2011, 70(1):58-65.
    [2]Hellal FA, EL-Shabrawi HM, EL-Hady MA, et al. Influence of PEGinduced drought stress on molecular and biochemical constituentsand seedling growth of Egyptian barley cultivars[J]. J GenetEngin Biot, 2018, 16(1):203-212.
    [3]李泽,谭晓风,卢锟,等.干旱胁迫对两种油桐幼苗生长、气体交换及叶绿素荧光参数的影响[J].生态学报, 2017, 37(5):1515-1524.
    [4]张金政,张起源,孙国峰,等.干旱胁迫及复水对玉簪生长和光合作用的影响[J].草业学报, 2014, 23(1):167-176.
    [5]Zhang SH, Xu XF, Sun YM, et al. Influence of drought hardeningon the resistance physiology of potato seedlings under droughtstress[J]. J Integr Agri, 2018, 17(2):336-347.
    [6]Mashilo J, Odindo AO, Shimelis HA, et al. Photosynthetic responseof bottle gourd[Lagenaria siceraria(Molina)Standl.]to droughtstress:Relationship between cucurbitacins accumulation anddrought tolerance[J]. Scientia Horticulturae, 2018, 231:133-143.
    [7]杜润峰,郝文芳,王龙飞.达乌里胡枝子抗氧化保护系统及膜脂过氧化对干旱胁迫及复水的动态响应[J].草业学报, 2012,21(2):51-61.
    [8]陈彪,李继伟,王小东,等.外源硒对干旱胁迫下烤烟生长和生理特性的影响[J].植物生理学报, 2018, 54(1):165-172.
    [9]Vaculík M, Pavlovi?A, Lux A. Silicon alleviates cadmium toxicityby enhanced photosynthetic rate and modified bundle sheath's cellchloroplasts ultrastructure in maize[J]. Ecotox Environ Safe,2015, 120(9):66-73.
    [10]Wu Z, Liu S, Zhao J, et al. Comparative responses to siliconand selenium in relation to antioxidant enzyme system andthe glutathione-ascorbate cycle in flowering Chinese cabbage(Brassica campestris L. ssp. chinensis var. utilis)under cadmiumstress[J]. Environ Exp Bot, 2017, 133:1-11.
    [11]Etesami H, Jeong BR. Silicon(Si):Review and future prospectson the action mechanisms in alleviating biotic and abiotic stressesin plants[J]. Ecotox Environ Safe, 2018, 147:881-896.
    [12]孙山,徐秀玉,程来亮,等.干旱胁迫下硅对平邑甜茶光合功能的影响[J].植物生理学报, 2015, 51(12):2231-2238.
    [13]Luyckx M, Hausman JF, Lutts S, et al. Silicon and plants:Currentknowledge and technological perspectives[J]. Front Plant Sci,2017, 8(19):411.
    [14]QinGZ,TianSP.EnhancementofbiocontrolactivityofCryptococcus Laurentii by silicon and the possible mechanismsinvolved[J]. Phytopathology, 2005, 95(1):69-75.
    [15]Jayawardana HARK, Weerahewa HLD, Saparamadu MDJS. Themechanisms underlying the anthracnose disease reduction by ricehull as a silicon source in capsicum(Capsicum annuum L.)grownin simplified hydroponics[J]. Procedia Food Sci, 2016, 6:147-150.
    [16]鲁黎明.烟草科学研究与方法论[M].北京:科学出版社,2013.
    [17]王学奎,黄见良.植物生理生化实验原理与技术[M].北京:高等教育出版社, 2015.
    [18]陈容钦,舒文,葛奎,等.干旱胁迫训练对花生生长及胁迫相关基因表达的影响[J].植物生理学报, 2017, 53(10):1921-1927.
    [19]Javadi T, Rohollahi D, Ghaderi N, et al. Mitigating the adverseeffects of drought stress on the morpho-physiological traits andanti-oxidative enzyme activities of Prunus avium throughβ-aminobutyric acid drenching[J]. Scientia Horticulturae, 2017, 218:156-163.
    [20]Farooq M, Hussain M, Wahid A, et al. Drought stress in plants:An overview[M]//Aroca R(ed). Plant Responses to Droughtstress. Berlin Heidelberg:Springer, 2012:1-33.
    [21]Hameed A, Sheikh MA, Jamil A, et al. Seed priming with sodiumsilicate enhances seed germination and seedling growth in wheat(Triticum aestivum L.)under water deficit stress induced bypolyethylene glycol[J]. Pak J Life Soc Sci, 2013, 11(1):19-24.
    [22]Chen W, Yao X, Cai K, et al. Silicon alleviates drought stress of riceplants by improving plant water status, photosynthesis and mineralnutrient absorption[J]. Biol Trace Elem Res, 2011, 142(1):67-76.
    [23]张仁和,郑友军,马国胜,等.干旱胁迫对玉米苗期叶片光合作用和保护酶的影响[J].生态学报, 2011, 31(5):1303-1311.
    [24]Xie ZM, Song R, Shao HB, et al. Silicon improves maizephotosynthesis in saline-alkaline soils[J]. Sci World J, 2015,10:1-6.
    [25]王耀晶,马聪,张薇,等.干旱胁迫下硅对草莓生长及生理特性的影响[J].核农学报, 2013, 27(5):703-707.
    [26]何淑平,靳亚忠,王鹏.硅对干旱胁迫下四棱豆幼苗生物量和生理特性的影响[J].水土保持学报, 2015, 29(2):263-266.
    [27]Kim YH, Khan AL, Waqas M, et al. Silicon regulates antioxidantactivities of crop plants under abiotic-induced oxidative stress:areview[J]. Front Plant Sci, 2017, 510:1-7.
    [28]Aroca R, Porcel R, Ruizlozano JM. Regulation of root water uptakeunder abiotic stress conditions[J]. J Exp Bot, 2012, 63(1):43-57.
    [29]Gong HJ, Chen KM, Chen GC, et al. Effects of silicon on growth ofwheat under drought[J]. Journal of Plant Nutrition, 2003, 26(5):1055-1063.
    [30]Rizwan M, Ali S, Ibrahim M, et al. Mechanisms of silicon-mediatedalleviation of drought and salt stress in plants:a review[J].Environ Sci Pollut R, 2015, 22(20):15416-15431.
    [31]Zhu YX, Gong HJ. Beneficial effects of silicon on salt and droughttolerance in plants[J]. Agron Sustain Dev, 2014, 34(2):455-472.
    [32]杨慧颖,邓雅楠,许凌欣,等.干旱胁迫下硅对肥皂草抗氧化系统及膜质稳定性的影响[J].草业学报, 2017, 26(10):77-86.
    [33]Guerra D, Prieto G, Pena I, et al. A reassessment of the function ofthe so-called compatible solutes in the halophytic plumbaginaceaeLimonium Latifolium[J]. Curr Vasc Pharmacol, 2018, 144(3):1598-1611.
    [34]Stetsenko LA, Shevyakova NI, Rakitin VY, et al. Proline protectsAtropa belladonna plants against nickel salt toxicity[J]. Russ JPlant Physl, 2011, 58(2):337-343.
    [35]Fahad S, Hussain S, Matloob A, et al. Phytohormones and plantresponses to salinity stress:a review[J]. J Plant Growth Regul,2015, 75(2):391-404.
    [36]孙聪聪,赵海燕,郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响[J].植物生理学报, 2017, 53(3):470-476.
    [37]Pereira TS, Lobato AKDS, Tan KYD, et al. Positive interferenceof silicon on water relations, nitrogen metabolism, and osmoticadjustment in two pepper(Capsicum annuum)cultivars underwater deficit[J]. Aust J Crop Sci, 2013, 58(4):1064-1071.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700