陕西地区桥梁结构温度作用特点
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Thermal Action on Bridge Structures in Shaanxi Province
  • 作者:袁卓亚 ; 王旭 ; 朱伟庆 ; 胡强
  • 英文作者:YUAN Zhuo-ya;WANG Xu;ZHU Wei-qing;HU Qiang;Northwest Branch of China Communications Construction Co., Ltd.;Xi'an Highway Research Institute;School of Highway, Chang'an University;
  • 关键词:桥梁工程 ; 温度作用 ; 有限元分析 ; 桥梁结构 ; 有效温度标准值 ; 温度梯度
  • 英文关键词:bridge engineering;;thermal action;;FEA;;bridge structure;;standard effective temperature;;temperature gradient
  • 中文刊名:GLJK
  • 英文刊名:Journal of Highway and Transportation Research and Development
  • 机构:中国交通建设股份有限公司西北分公司;西安公路研究院;长安大学公路学院;
  • 出版日期:2019-07-15
  • 出版单位:公路交通科技
  • 年:2019
  • 期:v.36;No.295
  • 基金:陕西省交通运输厅科研项目(14-19K,14-20K)
  • 语种:中文;
  • 页:GLJK201907009
  • 页数:8
  • CN:07
  • ISSN:11-2279/U
  • 分类号:77-84
摘要
桥梁结构的温度作用与其所在地区的气候特点非常相关。为得到陕西地区桥梁结构温度作用的特点,首先根据陕西地区的气候特点,选取典型城市分别代表严寒地区、寒冷地区以及温热地区。在统计历年最高和最低日平均气温,以及历年最高和最低气温数据的基础上,根据《公路桥涵设计通用规范》的计算方法得到陕西不同气温区域的结构有效温度标准值。其次,选取某实际工程中混凝土小箱梁,以及钢桥面钢梁和混凝土桥面钢梁,分别建立了有限元模型,计算分析了其在不同气温区域时的竖向温度梯度分布。对比计算结果与规范表明:规范中针对结构有效温度标准值的取值总体较为保守,但是针对钢桥面钢桥、混凝土桥面钢桥在寒冷地区和温热地区时的最高有效温度标准值取值略偏于不安全;不同截面形式的梁在沿梁高方向存在明显的非线性温度梯度;同一种梁在不同地区最不利时刻的截面温度分布模式基本一致,地区差异较小;不同截面形式的梁中,混凝土小箱梁截面平均温度最小、但沿梁高方向竖向温差最大,而钢桥面钢梁截面平均温度最大、但在沿梁高方向竖向温差最小;规范中竖向温度梯度分布模式较计算结果偏于安全,但是规范中没有考虑混凝土小箱梁底板位置明显的负温度梯度的情况。
        The thermal action on bridge structure is very relative to the climate characteristics of the bridge area. In order to obtain the characteristics of thermal action on bridge structures in Shaanxi Province, 3 cities are selected to represent the severe cold region, cold region and warm region of Shaanxi according to the climatic characteristics of Shaanxi Province at first. Based on the maximum/minimum daily average temperature and the maximum/minimum air temperature in the past several years, the standard effective temperatures of the bridge structures in the 3 regions are calculated respectively according to the calculation method in General Code for Design of Highway Bridges and Culverts. Then, selecting a concrete box girder of a practical engineering, a steel girder with steel deck and a steel girder with concrete deck, their FE models are established respectively to analyze their vertical temperature gradient distributions in different temperature regions. By comparing the calculating result and the code, it can be found that(1) the values of standard effective temperature of the structure specified in the code are conservative on the whole, while the values of the maximum standard effective temperature specified for steel bridges with steel deck and concrete deck in cold region and warm region are a little unsafe;(2) the vertical temperature gradient of the girders with different cross-sections are nonlinear;(3) the sectional temperature distribution of the same girder in different regions at the worst moment are similar;(4) among the girders with different cross-sections, the average temperature of cross-section of concrete box girder is the smallest but its vertical temperature difference is the largest, while the average temperature of cross-section of the steel girder with steel deck is the largest but its vertical temperature difference is the smallest;(5) the distribution pattern of vertical temperature gradient in the code is conservative compared to calculation result, but the obvious negative temperature gradient in the bottom slab of the concrete box girder is not considered in the code.
引文
[1]JTG D64-2015,公路钢结构桥梁设计规范[S].JTG D64-2015,Specifications for Design of Highway Steel Bridge[S].
    [2]何翔,方诗圣,方飞,等.不同梯度温度作用下曲线桥梁的温度效应分析[J].合肥工业大学学报:自然科学版,2012,35(8):1087-1092.HE Xiang,FANG Shi-sheng,FANG Fei,et al.Analysis of Temperature Effects of Curved Bridge under Different Gradient Temperature Load[J].Journal of Hefei University of Technology:Natural Science Editin,2012,35(8):1087-1092.
    [3]季德钧,刘江,张3芳,等.高原高寒地区钢-混凝土组合梁斜拉桥温度效应分析[J].建筑科学与工程学报,2016,33(1):113-119.JI De-jun,LIU Jiang,ZHANG Zhuan-fang,et al.Temperature Effect Analysis of Steel-concrete Composite Girder Cable-stayed Bridge in Arctic-alpine Region[J].Journal of Architecture and Civil Engineering,2016,33(1):113-119.
    [4]杨佐,赵勇,苏小卒.国内外规范的混凝土桥梁截面竖向温度梯度模式比较[J].结构工程师,2010,26(1):37-43.YANG Zuo,ZHAO Yong,SU Xiao-zu.Comparison of Vertical Temperature Gradients at Cross Sections of Concrete Bridges in Bridge Design Codes of Different Countries[J].Structural Engineers,2010,26(1):37-43.
    [5]马毓泉,汪屏,冯云成.中、英、美规范温度梯度效应的分析比较[J].交通科技,2008(5):67-70.MA Yu-quan,WANG Ping,FENG Yun-cheng.Comparison of Effect of Temperature Difference among Specifications of China,America and British[J].Transportation Science and Technology,2008(5):67-70.
    [6]袁磊,王石磊,张勇.混凝土铺装箱梁桥的合理温度梯度[J].铁道建筑,2015(4):1-5.YUAN Lei,WANG Shi-lei,ZHANG Yong.Rational Temperature Gradient of Box Girder Bridges with Concrete Pavement[J].Railway Engineering,2015(4):1-5.
    [7]刘文丽,贡金鑫,张秀芳.铺装层对T形梁桥梁竖向温度梯度的影响[J].公路交通科技,2014,31(10):45-50.LIU Wen-li,GONG Jin-xin,ZHANG Xiu-fang.Impact of Pavement Layer on Vertical Temperature Gradient of T-girder Bridge[J].Journal of Taiyuan University of Technology,2014,31(10):45-50.
    [8]高大峰,何新成,任禹州.陕北榆林地区混凝土箱梁温度梯度分析[J].太原理工大学学报,2012,43(2):212-215.GAO Da-feng,HE Xin-cheng,REN Yu-zhou.Concrete Box Girder Temperature Gradient Analysis of Yulin District[J].Journal of Taiyuan University of Technology,2012,43(2):212-215.
    [9]李长凤,王岚,赵延林,等.寒冷地区混凝土箱梁温度作用影响[J].黑龙江科技学院学报,2013,23(2):169-172.LI Chang-feng,WANG Lan,ZHAO Yan-lin,et al.Research on Temperature Effect on Reinforced Box Girder in Cold Region[J].Journal of Heilongjiang Institute of Science and Technology,2013,23(2):169-172.
    [10]梅飞鸣,章熙,任泽霈.传热学[M].5版.北京:中国建筑工业出版社,2007.MEI Fei-ming,ZHANG Xi,REN Ze-pei.Heat Transfer Theory[M].5th ed.Beijing:China Architecture&Building Press,2007.
    [11]朱伯芳.大体积混凝土的温度应力与温度控制[M].2版.北京:中国电力出版社,2012.ZHU Bo-fang.Temperature Stress and Temperature Control of Mass Concrete[M].2nd ed.Beijing:China Electric Power Press,2012.
    [12]李申生.太阳能物理学[M].北京:首都师范大学出版社,1996.LI Shen-sheng.Solar Energy Physics[M].Beijing:Capital Normal University Press,1996.
    [13]凯尔别克F.太阳辐射对桥梁结构的影响[M].刘兴法,等译.北京:中国铁道出版社,1981.KEHLBECK F.Influence of Solar Radiation on Bridge Structure[M].LIU Xing-fa,et al translated.Beijing:China Railway Publishing House,1981.
    [14]刘广龙,刘江,刘永健,等.西北极寒地区混凝土箱梁温度场实测与仿真分析[J].公路交通科技,2018,35(3):64-71.LIU Guang-long,LIU Jiang,LIU Yong-jian,et al.Measurement and Simulation of Temperature Field of Concrete Box Girder in Northwest Severe Cold Area[J].Journal of Highway and Transportation Research and Development,2018,35(3):64-71.
    [15]FU H C,NG S F,CHEUNG M S.Thermal Behavior of Composite Bridges[J].Journal of Structural Engineering,1990,116(12):3302-3323.
    [16]ELBADRY M M,GHALI A.Temperature Variations in Concrete Bridges[J].Journal of the Structural Engineering,1983,109(10):2355-2374.
    [17]向学建,董军,刘昊苏,等.高原冬季环境下桥梁温度场各参数的确定[J].公路交通科技,2012,29(3):58-63.XIANG Xue-jian,DONG Jun,LIU Hao-su,et al.Determination of Parameters of Temperature Field of Boxgirder Bridge in Winter Weather of Plateau[J].Journal of Highway and Transportation Research and Development,2012,29(3):58-63.
    [18]彭友松.混凝土桥梁结构日照温度效应理论及应用研究[D].成都:西南交通大学,2007.PENG You-song.Studies on Theory and Application of Solar Radiation Thermal Effects on Concrete Bridges[D].Chengdu:Southwest Jiaotong University,2007.
    [19]杨世铭.传热学[M].北京:高等教育出版社,1998.YANG Shi-ming.Heat Transfer Theory[M].Beijing:Higher Education Press,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700