悬浮隧道整体冲击响应模拟方法及试验验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation Method for Global Impact Dynamic Response of Submerged Floating Tunnel and Experimental Verification
  • 作者:杨赢 ; 项贻强 ; 陈政 ; 林亨
  • 英文作者:YANG Ying;XIANG Yi-qiang;CHEN Zheng-yang;LIN Heng;School of Civil Engineering and Architecture, Zhejiang University;School of Civil Engineering, Shaoxing University;
  • 关键词:隧道工程 ; 悬浮隧道 ; 数值模拟 ; UAMP子程序 ; 冲击试验 ; 流体阻力
  • 英文关键词:tunnel engineering;;submerged floating tunnel;;numerical simulation;;UAMP subroutine;;impact test;;hydraulic resistance
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:浙江大学建筑工程学院;绍兴文理学院土木工程学院;
  • 出版日期:2019-01-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.185
  • 基金:国家自然科学基金项目(51279178,51541810);; 中央高校基本科研业务费专项资金项目(2018QNA4032)
  • 语种:中文;
  • 页:ZGGL201901015
  • 页数:8
  • CN:01
  • ISSN:61-1313/U
  • 分类号:131-138
摘要
为研究水下悬浮隧道管体在冲击荷载下的整体动力响应,提出对应的简化模拟方法,在有限元软件ABAQUS中结合自定义幅值(UAMP)子程序进行了冲击荷载作用下考虑流体作用的悬浮隧道整体响应分析。基于Morison方程,将流体作用分为非线性阻力和附加质量力。首先,以分段线荷载的形式表示流体阻力沿管体纵向的不均匀分布。在UAMP子程序中采用FORTRAN语言编写与管体运动速度相关的流体阻力幅值计算程序。通过在ABAQUS与UAMP子程序之间管体运动速度和流体阻力幅值的交互传递,实现了荷载大小同时随时间和空间变化的非线性流体阻力加载。其次,考虑与管体加速度相关的流体附加质量力,其幅值在ABAQUS中通过定义浸没式截面自动计算。最后,进行悬浮隧道整体模型冲击试验,采用提出的模拟方法对试验典型工况进行分析,并将计算结果与试验实测值进行对比。结果表明:提出的建模方法能较好反映悬浮隧道结构动力特性;随着冲击强度的增大,冲击点处管体最大位移和加速度增大,且峰值均出现在第1个运动周期内;采用简化模拟方法分析所得的管体位移和加速度响应与试验结果基本一致;该模拟方法的计算精度与流体阻力分段线荷载的分段长度有关,当分段长度小于管体总长的1/20时,分析结果趋于稳定。因此,基于UAMP子程序的流体作用的简化数值模拟方法能较好地用于悬浮隧道整体冲击响应分析,误差在工程允许范围内。
        In order to analyze the global dynamic response of the submerged floating tunnel(SFT) under impact load and propose the corresponding simplified simulation method, the analysis of the global response of the SFT under impact load considering the effect of the fluid action was carried out using the finite element software ABAQUS with a user-defined amplitude(UAMP) subroutine. Based on the Morison equation, the fluid action was divided into nonlinear hydraulic resistance and added mass force. Firstly, the non-uniform distribution of hydraulic resistance along the longitudinal direction of the tube was expressed in the form of piecewise line loads. In the UAMP subroutine, FORTRAN was used to compile the program for calculating the amplitude of the hydraulic resistance related to the velocity of tube motion. Through the interactive transfer of tube velocity and hydraulic resistance amplitude data between ABAQUS and the UAMP subroutine, the action of nonlinear hydraulic resistance changing with time and space was realized. Secondly, the added mass force associated with tube acceleration was considered, the amplitude of the added mass force was calculated automatically by defining the fully-submerged section in ABAQUS. Finally, the impact test of the SFT model was conducted, and the typical test conditions were analyzed by the proposed simulation method. The simulation results were compared with the test values. The results show that the proposed modeling method can reflect the dynamic characteristics of the SFT well. With the increase of the impact strength, the maximum displacement and acceleration of the tube at the impact point increase, and the peak value appears in the first cycle of motion. The displacement and acceleration responses of the tube obtained by the simplified simulation method were consistent with the experimental results. The accuracy of the simulation method was related to the segment length of the piecewise line load of the hydraulic resistance. When the segment length was less than 1/20 of the total length of the tube, the analysis results tended to be stable. Therefore, the simplified numerical simulation method based on the UAMP subroutine can be used to analyze the global impact response of the SFT, and the error is within the allowable range of engineering.
引文
[1] 项贻强,陈政阳,杨赢.悬浮隧道动力响应分析方法及模拟的研究进展[J].中国公路学报,2017,30(1):69-76. XIANG Yi-qiang, CHEN Zheng-yang, YANG Ying. Research Development of Method and Simulation for Analyzing Dynamic Response of Submerged Floating Tunnel [J]. China Journal of Highway and Transport, 2017, 30 (1): 69-76.
    [2] 麦继婷,罗忠贤,关宝树.波流作用下悬浮隧道的涡激动力响应[J].铁道学报,2005,27(1):102-105. MAI Ji-ting, LUO Zhong-xian, GUAN Bao-shu. The Vortex Excited Dynamic Response for a Submerged Floating Tunnel Under the Combined Wave and Current Effect [J]. Journal of the China Railway Society, 2005, 27 (1): 102-105.
    [3] XIANG Yi-qiang, CHAO Chun-feng. Vortex-induced Dynamic Response Analysis for the Submerged Floating Tunnel System Under the Effect of Currents [J]. Journal of Waterway Port Coastal & Ocean Engineering, 2012, 139 (3): 183-189.
    [4] 葛斐,龙旭,王雷,等.水中悬浮隧道管段锚索耦合模型涡激振动研究[J].中国公路学报,2009,22(3):83-88. GE Fei, LONG Xu, WANG Lei, et al. Study of Vortex-induced Vibration of Submerged Floating Tunnel Tube-tether Coupled Model [J]. China Journal of Highway and Transport, 2009, 22 (3): 83-88.
    [5] MARTINELLI L, BARBELLA G, FERIANI A. A Numerical Procedure for Simulating the Multi-support Seismic Response of Submerged Floating Tunnels Anchored by Cables [J]. Engineering Structures, 2011, 33 (10): 2850-2860.
    [6] 陈健云,王变革,孙胜男.悬浮隧道锚索的涡激动力响应分析[J].工程力学,2007,24(10):186-192. CHEN Jian-yun, WANG Bian-ge, SUN Sheng-nan. Analysis of Vortex-induced Dynamic Response for the Anchor Cable of Submerged Floating Tunnel [J]. Engineering Mechanics, 2007, 24 (10): 186-192.
    [7] 晁春峰,项贻强,杨赢,等.悬浮隧道水下锚索抑振装置试验研究[J].振动工程学报,2016,29(4):687-693. CHAO Chun-feng, XIANG Yi-qiang, YANG Ying, et al. Cables Dynamic Response Experiment of Submerged Floating Tunnel Based on Fluid-structure Interaction [J]. Journal of Vibration Engineering, 2016, 29 (4): 687-693.
    [8] TVEIT P. Submerged Floating Tunnels (SFTs) for Norwegian Fjords [J]. Procedia Engineering, 2010, 4: 135-143.
    [9] 惠磊,葛斐,洪友士.水中悬浮隧道在冲击载荷作用下的计算模型与数值模拟[J].工程力学,2008,25(2):209-213. HUI Lei, GE Fei, HONG You-shi. Calculation Model and Numerical Simulation of Submerged Floating Tunnel Subjected to Impact Load [J]. Engineering Mechanics, 2008, 25 (2): 209-213.
    [10] 罗刚,潘少康,周晓军,等.水下非接触爆炸冲击作用下悬浮隧道动力响应[J].中国公路学报,2018,31(6):244-253. LUO Gang, PAN Shao-kang, ZHOU Xiao-jun, et al. Dynamic Response of a Submerged Floating Tunnel During Non-contact Underwater Explosions [J]. China Journal of Highway and Transport, 2018, 31 (6): 244-253.
    [11] SEO S, JEONG H, SAGONG M, et al. Simplified Collision Analysis Method for Submerged Floating Railway Using Theory of Beam with Elastic Foundation [C]//FRYDENLUND T, FLAATE K, ?STLID H. Proceedings of Sixth Symposium on Strait Crossing. Bergen: Statens Vegvesen, 2013: 825-835.
    [12] SEO S, SAGONG M, SON S. Global Response of Submerged Floating Tunnel Against Underwater Explosion [C]//FRYDENLUND T,FLAATE K,?STLID H. Proceedings of Sixth Symposium on Strait Crossing. Bergen: Statens Vegvesen, 2013: 842-849.
    [13] LEE Y, HAN S, PARK W. Impact Analysis of Submerged Floating Tunnel for Conceptual Design [C]//FRYDENLUND T, FLAATE K, ?STLID H. Proceedings of Sixth Symposium on Strait Crossing. Bergen: Statens Vegvesen, 2013: 299-308.
    [14] 张嫄,董满生,唐飞.冲击荷载作用下水中悬浮隧道的位移响应[J].应用数学和力学,2016,37(5):483-491. ZHANG Yuan, DONG Man-sheng, TANG Fei. Displacement Responses of Submerged Floating Tunnels under Impact Loads [J]. Applied Mathematics and Mechanics, 2016, 37 (5): 483-491.
    [15] XIANG Yi-qiang, YANG Ying. Spatial Dynamic Response of Submerged Floating Tunnel Under Impact Load [J]. Marine Structure, 2017, 53: 20-31.
    [16] 晁春峰.悬浮隧道流固耦合动力响应分析及试验研究[D].杭州:浙江大学,2013. CHAO Chun-feng. Dynamic Response Analysis and Experiment of Submerged Floating Tunnel Based on Fluid-structure Interaction [D]. Hangzhou: Zhejiang University, 2013.
    [17] 王长春.水中悬浮隧道与洋流耦合作用的模型试验[D].成都:西南交通大学,2005. WANG Chang-chun. Model Experiment on the Interaction Between Submerged Floating Tunnel and Current [D]. Chengdu: Southwest Jiaotong University, 2005
    [18] MANDARA A, RUSSO E, FAGGIANO B, et al. Analysis of Fluid-structure Interaction for a Submerged Floating Tunnel [J]. Procedia Engineering, 2016, 166: 397-404.
    [19] MANDARA A, BENAROYA H. Non-linear Stochastic Dynamics of Tension Leg Platforms [J]. Journal of Sound and Vibration, 1999, 220: 27-65.
    [20] BERNT J, ROLF L, GUNNAR E, et al. Various SFT Concepts for Crossing Wide and Deep Fjords [C]//FRYDENLUND T, FLAATE K, ?STLID H. Proceedings of Sixth Symposium on Strait Crossing. Bergen: Statens Vegvesen, 2013: 430-440.
    [21] 章关永.桥梁结构试验[M].北京:人民交通出版社,2010. ZHANG Guan-yong. Bridge Structural Testing [M]. Beijing: China Communications Press, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700