异丙醇铝包覆对正极材料钴酸锂高电压性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of AIP Coating on the Electrochemical Performance of LiCoO_2 Cathode Materials at High Voltage
  • 作者:靳佳 ; 魏进平
  • 英文作者:Jin Jia;Wei Jinping;Institute of New Energy Material Chemistry,Nankai University;Tianjin Yuhanyao Graphene Energy Storage Material Science and Technology Co.,Ltd.;
  • 关键词:锂离子电池 ; AIP包覆 ; LiCoO_2 ; 高电压 ; 电化学性能
  • 英文关键词:lithium-ion batteries;;AIP coating;;LiCoO_2;;high voltage;;electrochemical performance
  • 中文刊名:NKDZ
  • 英文刊名:Acta Scientiarum Naturalium Universitatis Nankaiensis
  • 机构:南开大学新能源材料化学研究所;天津玉汉尧石墨烯储能材料科技有限公司;
  • 出版日期:2019-06-15
  • 出版单位:南开大学学报(自然科学版)
  • 年:2019
  • 期:v.52
  • 语种:中文;
  • 页:NKDZ201903019
  • 页数:7
  • CN:03
  • ISSN:12-1105/N
  • 分类号:107-113
摘要
采用固相焙烧法制备正极材料钴酸锂LiCoO_2,并采用异丙醇铝(AIP)对其进行表面包覆,通过XRD、SEM、EDS mapping和电池充放电测试研究了AIP包覆量对材料结构和电化学性能的影响.电化学性能测试表明,AIP包覆可有效改善材料的循环性能,提高材料的放电比容量、库仑效率和倍率性能.相比于未包覆的LiCoO_2样品,包覆量为0.1%的LiCoO_2样品,具有最优异的电化学性能,在0.2C下的首次放电比容量提升至176.8 mAh/g,库仑效率高达97.2%;在1.0C下经50次循环后容量保持率为96.2%.
        The LiCoO_2 cathode material was prepared by a solid calcination method, and the material was then coated by aluminium isopropoxide(AIP). Influence of the amount of AIP on the structure and electrochemical properties of cathode material was investigated by X-ray diffraction(XRD), scanning electron microscope(SEM), energy dispersive spectroscopy mapping(EDS mapping) and electrochemical performance tests. EDS mapping characterization proved that the LiCoO_2 particles were homogeneously coated by a thin coating layer. The cycle performance, rate performance, discharge capacity and coulombic efficiency of the AIP coated sample were improved significantly, and the 0.1% AIP coated material showed the best electrochemical performance. Compared to uncoated material, the initial discharge capacity of the 0.1% AIP coated material was improved to 176.8 mAh/g at 0.2 C, and the coulombic efficiency was up to 97.2%,the specific capacity retention was 96.2% after 50 cycles at 1.0 C.
引文
1 Zhang Y H,Shi H,Song D W,et al.Facile synthesis of a novel structured Li[Ni0.66Co0.1Mn0.24]O2cathode material with improved cycle life and thermal stability via ion diffusion[J].J Power Sources,2016,327:38-43.
    2 Zheng X B,Li X H,Huang Z J,et al.Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2cathode materials by ultrasonic-assisted co-precipitation method[J].J Alloys Compd,2015,644:607-614.
    3 Konishi H,Yoshikawa M,Hirano T,The effect of thermal stability for high-Ni-content layer-structured cathode materials,LiNi0.8Mn0.1-xCo0.1MoxO2(x=0,0.02,0.04)[J].J Power Sources,2013,244:23-28.
    4 Noh H J,Myung S T,Lee Y J,et al.High-energy layered oxide cathodes with thin shells for improved surface stability[J].Chem Mater,2014,26:5 973-5 979.
    5 Liu W,Oh P,Liu X E,et al.Nickel-rich layered lithium transitional-metal oxide for high-energy lithium-ion batteries[J].Angew Chem Inter Ed,2015,54:4 440-4 458.
    6 Cho J,Kim T J,Kim J,et al.Synthesis,thermal,and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2cathode materials for a Li-ion cell[J].J Electrochem Soc,2004,151:A1 899-A1 904.
    7 Makimura Y,Sasaki T,Nonaka T,et al.Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2for lithium-ion[J].JMater Chem A,2016(4):8 350-8 358.
    8 Amin R,Ravnsbak D B,Chiang Y M.Characterization of electronic and ionic transport in Li1-xNi0.8Co0.15Al0.05O2(NCA)[J].J Electrochem Soc,2015,162:A1 163-A1 169.
    9 Zhang H Z,Qiao Q Q,Li G R,et al.Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2oxide as cathode material for lithium-ion battery[J].J Mater Chem,2012,22:13 104-13 109.
    10 Li Y,Bettge M,Polzin B,et al.Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2-graphite lithium-ion cells[J].J Electrochem Soc,2013,160:A3 006-A3 019.
    11 Yu S H,Yoon T,Mun J,et al.Continuous activation of Li2MnO3component upon cycling in Li1.167Ni0.233Co0.1Mn0.467Mo0.033O2cathode material for lithium ion batteries[J].J Mater Chem A,2013(1):2 833-2 839.
    12 Kim H,Cho J.Superior lithium electroactive mesoporous Si@Carbon core-shell nanowires for lithium battery anode material[J].Nano Lett,2008,8:3 688-3 691.
    13 Zhang Z L,Wang Y H,Ren W F,et al.Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries[J].Angew Chem Inter Ed,2014,126:5 265-5 269.
    14 Liu J,Kopold P,van Aken P A,et al.Energy storage materials from nature through nanotechnology:A sustainable route from reed plants to a silicon anode for lithium-ion batteries[J].Angew Chem Inter Ed,2015,127:9 768-9 772.
    15 Hirata A,Kohara S,Asada T,et al.Atomic-scale disproportionation in amorphous silicon monoxide[J].Nat Commun,2016(7):11 591-11 597.
    16 David L,Bhandavat R,Barrera U,et al.Silicon oxycarbide glass-graphene composite paper electrode for longcycle lithium-ion batteries[J].Nat Commun,2016(7):10 998-11 007.
    17 Woo J,Baek S H.A comparative investigation of different chemical treatments on SiO anode materials for lithium-ion batteries:towards long-term stability[J].RSC Adv,2017(7):4 501-4 509.
    18 Song T,Kil K C,Jeon Y,et al.Nitridated Si-Ti-Ni alloy as an anode for Li rechargeable batteries[J].JPower Sources,2014,253:282-286.
    19 Obrovac M N,Chevrier V L.Alloy negative electrodes for Li-ion batteries[J].Chem Rev,2014,114:11 444-11 502.
    20 Shim J H,Cho S W,Missyul A,et al.Facial-shape controlled precursors for lithium cobalt oxides and the electrochemical performances in lithium ion battery[J].J Power Sources,2015,274:659-666.
    21 Shim J H,Lee K S,Missyul A,et al.Characterization of spinel LixCo2O4-coated LiCoO2prepared with postthermal treatment as a cathode material for lithium ion batteries[J].Chem Mater,2015,27:3 273-3 279.
    22 Shim J H,Lee J,Han S Y,et al.Synergistic effects of coating and doping for lithium ion battery cathode materials:synthesis and characterization of lithium titanate-coated LiCoO2with Mg doping[J].Electrochim Acta,2015,186:201-208.
    23李慧芳,高俊奎,李飞,等.锂离子电池浮充测试的鼓胀原因分析及改善[J].电源技术,2013,37:2 123-2 126.
    24 Wang Q S,Ping P,Zhao X J,et al.Thermal runaway caused fire and explosion of lithium ion battery[J].JPower Sources,2012,208:210-224.
    25 Golubkov A W,Scheikl S,Planteu R,et al.Thermal runaway of commercial 18650 Li-ion batteries with LFPand NCA cathodes-impact of state of charge and overcharge[J].RSC Adv,2015(5):57 171-57 186.
    26 Ushirogata K,Sodeyama K,Okuno Y,et al.Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery[J].J Am Chem Soc,2013,135:11 967-11 974.
    27 Park M S,Park I,Kang Y S,et al.A search map for organic additives and solvents applicable in high-voltage rechargeable batteries[J].Phys Chem Chem Phys,2016,18:26 807-26 815.
    28 Hu M,Pang X L,Zhou Z.Recent progress in high-voltage lithium ion batteries[J].J Power Sources,2013,237:229-242.
    29 Shim J H,Lee S,Park S S.Effects of MgO coating on the structural and electrochemical characteristics of LiCoO2as cathode materials for lithium ion battery[J].Chem Mater,2014,26:2 537-2 543.
    30 Zhang Z R,Gong Z L,Yang Y.Electrochemical performance and surface properties of bare and TiO2-coated cathode materials in lithium-ion batteries[J].J Phys Chem B,2004,108:17 546-17 552.
    31 Scott I D,Jung Y S,Cavanagh A S,et al.Ultrathin coatings on nano-LiCoO2for Li-ion vehicular applications[J].Nano Lett,2011,11:414-418.
    32 Chen Z H,Qin Y,Amine K,et al.Role of surface coating on cathode materials for lithium-ion batteries[J].JMater Chem,2010,20:7 606-7 612.
    33 Kim M G,Cho J.Reversible and high-capacity nanostructured electrode materials for Li-ion batteries[J].Adv Funct Mater,2009,19:1 497-1 514.
    34 Zhou Y,Lee Y H,Sun H X,et al.Coating solution for high-voltage cathode:AlF3atomic layer deposition for free-standing LiCoO2electrodes with high energy density and excellent flexibility[J].ACS Appl Mater Inter,2017(9):9 614-9 619.
    35 Jeong S Y,Park S J,Cho J.High-performance,layered,3D-LiCoO2cathodes with a nanoscale Co3O4coating via chemical etching[J].Adv Energy Mater,2011(1):368-372.
    36 Wang J,Yao S Z,Yu Y Y,et al.Improving the stability properties of 5 V lithium nickel manganese oxide spinel by surface coating with cobalt aluminum oxides for lithium ion batteries[J].Electrochim Acta,2016,208:310-317.
    37 Shim J H,Cho N H,Lee S H.Synthesis and characterization of Mg2TiO4-coated LiCoO2as a cathode material for lithium ion batteries[J].Electrochim Acta,2017,243:162-169.
    38 Lu J,Peng Q,Wang W Y,et al.Nanoscale coating of LiMO2(M=Ni,Co,Mn)nanobelts with Li+-conductive Li2TiO3:Toward better rate capabilities for Li-ion batteries[J].J Am Chem Soc,2013,135:1 649-1 652.
    39 Shim J H,Han J M,Lee J H,et al.Mixed electronic and ionic conductor-coated cathode material for high voltage lithium ion battery[J].ACS Appl Mater Inter,2016(8):12 205-12 210.
    40 Park K J,Park J H,Hong S G,et al.Enhancement in the electrochemical performance of zirconium/phosphate bi-functional coatings on LiNi0.8Co0.15Mn0.05O2by the removal of Li residuals[J].Phys Chem Chem Phys,2016,18:29 076-29 085.
    41 Qian J W,Liu L,Yang J X,et al.Electrochemical surface passivation of LiCoO2particles at ultrahigh voltage and its applications in lithium-based batteries[J].Nat Commun,2018(9):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700