一株提高植物幼苗耐受Cr~(6+)细菌(Exiguobacterium sp.S2)的分离与鉴定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation and identification of Exigubacterium sp. strain S2 improving the tolerance of plant seedlings to heavy metal Cr( Ⅵ)
  • 作者:周晓伦 ; 万建新 ; 王卫卫 ; 张伟 ; 姚彦红 ; 高芸
  • 英文作者:Zhou Xiaolun;
  • 关键词:玉米幼苗 ; Cr~(6+)耐受菌株 ; ACC脱氨酶 ; 吲哚乙酸 ; 微小杆菌
  • 中文刊名:JSNY
  • 英文刊名:Jiangsu Agricultural Sciences
  • 机构:甘肃医学院病原生物学教研室;西北大学西部资源生物与现代生物技术教育部重点实验室;
  • 出版日期:2019-05-07 18:04
  • 出版单位:江苏农业科学
  • 年:2019
  • 期:v.47
  • 基金:甘肃省高等学校科学研究项目(编号:2017A-146)
  • 语种:中文;
  • 页:JSNY201907066
  • 页数:5
  • CN:07
  • ISSN:32-1214/S
  • 分类号:281-285
摘要
植物促生菌因其具有对植物生长促进及增强抗逆性等优点,在植物-微生物联合修复重金属污染土壤中具有良好的应用潜力,能为环境生物修复以及工农业生产提供优良菌种资源,实现其更大范围的应用。以甘肃省平凉市污染土壤中分离得到的Cr~(6+)耐受菌株为目的菌,测定菌株的促植物生长特性(产IAA、溶磷、ACC脱氨酶活性),采用改良的Belimov方法筛选出1株促生特性较好的菌株,进行生理生化及16S rRNA基因序列分析鉴定。初步分离得到32株Cr~(6+)耐受菌株,根据改良的Belimov方法筛选出1株S2菌株,通过生理生化及16S rRNA鉴定S2菌株为Exiguobacterium sp.,GenBank登录号为MH180821。玉米幼苗生长试验表明,与不同Cr~(6+)浓度处理组相比,接种了S2菌株的玉米幼苗根长、茎长、叶面积都有显著提高,平均根长分别增加95.74%、41.34%、194.12%,平均茎长分别增加32.03%、-30.13%、28.96%,平均叶面积分别增加73.94%、35.17%、26.92%,平均鲜质量分别增加33.33%、33.62%、-20.00%,其显著提高了玉米幼苗对Cr~(6+)的耐受性。该研究表明,Exiguobacterium sp.S2在污染土壤中能够更好地定殖并保护促植物生长能力的发挥,为重金属污染土壤的植物-微生物联合原位修复提供了良好的微生物资源。
        
引文
[1]Karthik C,Ramkumar V S,Pugazhendhi A,et al.Biosorption and biotransformation of Cr(Ⅵ) by novel Cellulosimicrobium funkei strain AR6[J].Journal of the Taiwan Institute of Chemical Engineers,2017,70:282-290.
    [2]Cervantes C,Campos-García J,Devars S,et al.Interactions of chromium with microorganisms and plants[J].FEMS Microbiology Reviews,2001,25(3):335-347.
    [3]Tang S R,Wilke B M,Brooks R R.Heavy-metal uptake by metal-tolerant Elsholtzia haichowensis and Commelina communis from China[J].Communications in Soil Science and Plant Analysis,2001,32(5/6):895-905.
    [4]Khan A G.Relationships between chromium biomagnification ratio,accumulation factor,and mycorrhizae in plants growing on tannery effluent-polluted soil[J].Environment International,2001,26(5/6):417-423.
    [5]Karagiannidis N,Hadjisavva-Zinoviadi S.The mycorrhizal fungus Glomus mosseae enhances growth,yield and chemical composition of a durum wheat variety in 10 different soils[J].Nutrient Cycling in Agroecosystems,1998,52(1):1-7.
    [6]Davies J T,Puryear J D,Newton R J,et al.Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower(Helianthus annuus)[J].Journal of Plant Physiology,2001,158(6):777-786.
    [7]Davies J T,Puryear J D,Newton R J,et al.Mycorrhizal fungi increase chromium uptake by sunflower plants:influence on tissue mineral concentration,growth,and gas exchange[J].Journal of Plant Nutrition,2002,25(11):2389-2407.
    [8]Burd G I,Dixon D G,Glick B R.A plant growth-promoting bacterium that decreases nickel toxicity in seedlings[J].Applied and Environmental Microbiology,1998,64(10):3663-3668.
    [9]Cobbett C S.Phytochelatins and their roles in heavy metal detoxification[J].Plant Physiology,2000,123(3):825-832.
    [10]Jones D L,Hodge A,Kuzyakov Y.Plant and mycorrhizal regulation of rhizodeposition[J].New Phytologist,2004,163(3):459-480.
    [11]Gupta D K,Rai U N,Sinha S,et al.Role of Rhizobium(CA-1)inoculation in increasing growth and metal accumulation in Cicer arietinum L.growing under fly-ash stress condition[J].Bulletin of Environmental Contamination and Toxicology,2004,73(2):424-431.
    [12]Rajkumar M,Ma Y,Freitas H.Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal[J].Journal of Basic Microbiology,2008,48(6):500-508.
    [13]Kuffner M,Puschenreiter M,Wieshammer G A,et al.Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows[J].Plant and Soil,2008,304(1/2):35-44.
    [14]Compant S,Clément C,Sessitsch A.Plant growth-promoting bacteria in the rhizo- and endosphere of plants:their role,colonization,mechanisms involved and prospects for utilization[J].Soil Biology and Biochemistry,2010,42(5):669-678.
    [15]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [16]Penrose D M,Glick B R.Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J].Physiologia Plantarum,2003,118(1):10-15.
    [17]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72(1):248-254.
    [18]Sheng X F,Xia J J,Jiang C Y,et al.Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J].Environmental Pollution,2008,156(3):1164-1170.
    [19]Sagervanshi A,Kumari P,Nagee A,et al.Isolation and characterization of phosphate solublizing bacteria from anand agriculture soil[J].International Journal of Life Science and Pharma Research,2012,2(3):L256-L266.
    [20]Belimov A A,Hontzeas N,Safronova V I,et al.Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L.Czern)[J].Soil Biology and Biochemistry,2005,37(2):241-250.
    [21]Zhang Y F,He L Y,Chen Z J,et al.Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape[J].Journal of Hazardous Materials,2011,186(2/3):1720-1725.
    [22]Glick B R,Penrose D M,Li J P.A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria[J].Journal of Theoretical Biology,1998,190(1):63-68.
    [23]Patten C L,Glick B R.Role of pseudomonas putida indoleacetic acid in development of the host plant root system[J].Applied and Environmental Microbiology,2002,68(8):3795-3801.
    [24]Glick B R.Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase[J].FEMS Microbiology Letters,2005,251(1):1-7.
    [25]Chaudri A M,Allain C,Barbosa-Jefferson V L,et al.A study of the impacts of Zn and Cu on two rhizobial species in soils of a long-term field experiment[J].Plant and Soil,2000,221(2):167-179.
    [26]Bharti N,Yadav D,Barnawal D,et al.Exiguobacterium oxidotolerans,a halotolerant plant growth promoting rhizobacteria,improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress[J].World Journal of Microbiology and Biotechnology,2013,29(2):379-387.
    [27]Dastager S G,Kumaran D C,Pandey A.Characterization of plant growth-promoting rhizobacterium Exiguobacterium NⅡ-0906 for its growth promotion of cowpea (Vigna unguiculata)[J].Biologia,2010,65(2):197-203.
    [28]Selvakumar G,Joshi P,Nazim S,et al.Exiguobacterium acetylicum strain 1P(MTCC 8707)a novel bacterial antagonist from the North Western Indian Himalayas[J].World Journal of Microbiology & Biotechnology,2009,25(1):131-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700