某铅锌矿区农田重金属分布特征及其风险评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial distribution and risk assessment of heavy metal pollution in farmland soil of a lead-zinc mining area
  • 作者:吴劲楠 ; 龙健 ; 刘灵飞 ; 李娟 ; 廖洪凯 ; 彭四清 ; 万洪富
  • 英文作者:WU Jin-nan;LONG Jian;LIU Ling-fei;LI Juan;LIAO Hong-kai;PENG Si-qing;WAN Hong-fu;Guizhou Provincial Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment,Guizhou Normal University;Department of Geography and Environmental Science,Guizhou Normal University;Guangdong Institute of Eco-Environmental Technology;
  • 关键词:铅锌矿区农田 ; 土壤重金属污染 ; 自然邻点法 ; 三维可视化 ; 空间分布 ; 风险评价
  • 英文关键词:cropland in lead-zinc mining and melting area;;soil heavy metal pollution;;natural neighbor interpolation;;three-dimensional visualization;;spatial distribution;;risk assessment
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:贵州师范大学贵州省山地环境信息系统与生态环境保护重点实验室;贵州师范大学地理与环境科学学院;广东省生态环境技术研究所;
  • 出版日期:2018-03-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金委员会-贵州省人民政府喀斯特科学研究中心资助项目(U1612442);; 贵州省科技厅联合资金资助项目(黔科合LH字[2015]7781号)
  • 语种:中文;
  • 页:ZGHJ201803034
  • 页数:10
  • CN:03
  • ISSN:11-2201/X
  • 分类号:256-265
摘要
为进一步探讨铅锌矿开采和冶炼地区农田重金属污染的分布特征和污染途径,以会泽县者海镇铅锌矿区周边农田土壤为研究对象,共布设496个采样点,测定表层土壤中重金属(Cd、Hg、Pb、Cu、Zn)的含量.利用自然邻点法对表层土壤中重金属含量进行插值拟合,以空间三维模型研究该地区农田土壤重金属污染特征,运用单因子指数、综合污染指数和潜在生态风险指数法对重金属污染程度进行评价,采用相关分析、主成分分析和聚类分析识别污染途径.结果表明:Cd、Hg、Pb、Cu和Zn的含量平均值(mg/kg)分别是云南省背景值的33.05、5.83、12.02、4.89和16.33倍;Cd、Hg、Pb、Zn含量空间分布表现为西北部浓度最高,且中部高于东西两侧,而Cu与此相反;单因子指数评价结果显示99.8%的土样达到Cd重度污染,其次是Cu(82.06%)、Zn(62.50%);综合污染指数表明,研究区均处于重度污染程度,西北部尤为严重;综合生态风险评价表明,中部风险高两边低,Cd的贡献率最大占61%;相关分析结果显示,Zn、Cd、Pb、Hg之间呈显著正相关性(P<0.01),表明其污染途径相近;主成分分析和聚类分析表明,Cd、Hg、Pb、Zn污染途径主要与人类活动有关,Cu主要受自然因素影响,因此对该地区土壤重金属的修复和治理应综合考虑人为因素和自然因素的影响.
        The purpose of this study was to further investigate the general distribution of heavy metal in farmland soils and to identify the possible sources of heavy metals pollution from a lead-zinc mining and smelting area in Zhehai,a town of Huize County.A total of 496 topsoil samples were collected and the concentrations of Cd,Hg,Pb,Cu and Zn were determined in all the soil samples.The concentrations of heavy metals in surface soil were interpolated using the Natural Neighbor Interpolation method and three-dimensional models were created to study spatial characteristics of heavy metal pollution in the cropland soils.The degrees of heavy metals pollution were evaluated by using Single Pollution index(PI),Nemero Synthesis Pollution index(NPI) and Potential Ecological Risk index(PER).Principle Component Analysis and Cluster Analysis were used to identify pollution sources.The results showed that the concentrations(mg/kg) of Cd,Hg,Pb,Cu and Zn were 33.05,5.83,12.02,4.89 and 16.33 times as compared to soil background values of Yunnan Province,respectively.Spatial distribution of Cd,Hg,Pb and Zn in the cropland soils illustrated that the most seriously polluted region was in the northwest,meanwhile the center was more severe than the other two sides.The concentration of Cu,however,was showed a contrast trend.The results of PI showed that 99.8% of the amount of the soil samples was contaminated by Cd,which reached the heavy pollution level,and was followed by Cu(82.06%) and Zn(62.50%).NPIindicated that the whole study area belonged to heavy pollution degree,and especially in the northwest was the most severe region.PER demonstrated that high risk appeared in the middle while low risk could be found on both sides,which Cd made the greatest contribution to with a ratio of 61%.Correlation analysis revealed that Zn,Cd,Pb and Hg were positively correlated with each other(P<0.01),indicating that these four pollutants might come from the same source.The results of Principal Component Analysis and Cluster Analysis showed that Cd,Hg,Pb and Zn were mainly affected by the mining activities,while Cu was mostly affected by natural factors.Therefore,in order to recover the soil from heavy metal pollution,the impact of both anthropogenic and natural sources should be taken into accounts.
引文
[1]Meena R,Datta S P,Golui D,et al.Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain[J].Environmental Science&Pollution Research,2016,23(14):14269-14283.
    [2]Zhao F J,Ma Y,Zhu Y G,et al.Soil contamination in China:current status and mitigation strategies[J].Environmental Science&Technology,2015,49(2):750-759.
    [3]孙清斌,尹春芹,邓金锋,等.大冶矿区周边农田土壤和油菜重金属污染特征研究[J].农业环境科学学报,2012,31(1):85-91.
    [4]张厦,宋静,高慧,等.贵州铅锌冶炼区农田土壤镉铅有效性评价与预测模型研究[J].土壤,2017,49(2):328-336.
    [5]邹小冷,祖艳群,李元,等.云南某铅锌矿区周边农田土壤Cd、Pb分布特征及风险评价[J].农业环境科学学报,2014,33(11):2143-2148.
    [6]陆泗进,王业耀,何立环.会泽某铅锌矿周边农田土壤重金属生态风险评价[J].生态环境学报,2014,23(11):1832-1838.
    [7]刘小燕,陈棉彪,李良忠,等.云南会泽铅锌冶炼厂周边土壤重金属污染特征及健康风险评价[J].农业资源与环境学报,2016,33(3):221-229.
    [8]姚荣江,杨劲松,谢文萍,等.苏北滨海滩涂区土壤重金属含量及其时空变异研究[J].中国环境科学,2016,36(6):1810-1820.
    [9]Yuan C,Jia G,Chai S,et al.Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area,Jilin Province,Northeast China[J].Chemosphere,2015,134:67-75.
    [10]段晓勇,印萍,刘金庆,等.滦河口表层沉积物中重金属和多环芳烃的分布、来源及风险评估[J].中国环境科学,2016,36(4):1198-1206.
    [11]孙慧,郭治兴,郭颖,等.广东省土壤Cd含量空间分布预测[J].环境科学,2017,38(5):2111-2124.
    [12]李佳璐,姜霞,王书航,等.丹江口水库沉积物重金属形态分布特征及其迁移能力[J].中国环境科学,2016,36(4):1207-1217.
    [13]袁林旺,俞肇元,罗文,等.基于共形几何代数的GIS三维空间数据模型[J].中国科学:地球科学,2010,40(12):1740-1751.
    [14]张树清,周成虎,张俊岩,等.泛知识化三维GIS表达模型(UKRM)[J].中国科学:地球科学,2016,42(2):214-228.
    [15]朱庆.三维GIS及其在智慧城市中的应用[J].地球信息科学学报,2014,16(2):151-157.
    [16]甄红锋,赵耀强,成波.三维GIS可视化系统在地铁监测中的应用[J].地下空间与工程学报,2016,12(1):138-142.
    [17]高锡章,冯杭建,李伟.基于GIS的海洋观测数据三维可视化仿真研究[J].系统仿真学报,2011,23(6):1186-1190.
    [18]李杨,杨天鸿,刘洪磊,等.大安山煤矿三维可视化系统的建立及安全监测分析[J].采矿与安全工程学报,2014,31(2):277-283.
    [19]杜福光.基于Arc Scene城市三维可视化研究与应用[D].西安科技大学,2010.
    [20]李敬伟,湛方栋,何永美,等.云南会泽铅锌矿区土壤理化与生物学性质[J].应用与环境生物学报,2014,20(5):906-912.
    [21]尹鑫,周广柱,王翠珍,等.者海铅锌渣中重金属的赋存形态及环境风险评价[J].地球与环境,2016,44(4):478-483.
    [22]房辉,曹敏.云南会泽废弃铅锌矿重金属污染评价[J].生态学杂志,2009,28(7):1277-1283.
    [23]NY/T395-2000农田土壤环境质量监测技术规范[S].
    [24]GB7859-87森林土壤p H值的测定[S].
    [25]GB/T17141-1997土壤质量铅、镉的测定石墨炉原子吸收分光光度法[S].
    [26]GB/T17138-1997土壤质量铜、锌的测定火焰原子吸收分光广度法[S].
    [27]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990:330-485.
    [28]GB15618-1995土壤环境质量标准[S].
    [29]刘灵飞,龙健,万洪富,等.贵州喀斯特山区锑冶炼厂对农业土壤污染特征的影响及风险评价[J].土壤,2013,45(6):1036-1047.
    [30]田莉,李国琛,王颜红,等.葫芦岛锌厂周边农田土壤重金属浓度的空间变异及污染评价[J].生态学杂志,2016,35(11):3086-3092.
    [31]Hakanson L.An ecological risk index for aquatic pollution control.a sedimentological approach[J].Water Research,1980,14(8):975-1001.
    [32]范明毅,杨皓,黄先飞,等.典型山区燃煤型电厂周边土壤重金属形态特征及污染评价[J].中国环境科学,2016,36(8):2425-2436.
    [33]熊秋林,赵佳茵,赵文吉,等.北京市地表土重金属污染特征及潜在生态风险[J].中国环境科学,2017,37(6):2211-2221.
    [34]缪坤,李少梅,郭健,等.Surfer软件中高程数据内插方法比较分析[J].测绘科学技术学报,2014,31(4):431-435.
    [35]高洋,张健.基于自然邻点插值的数据处理方法[J].中国科学院大学学报,2005,22(3):346-351.
    [36]曹宏杰,王立民,罗春雨,等.三江平原地区农田土壤中几种重金属空间分布状况[J].生态与农村环境学报,2014,30(2):155-161.
    [37]姚荣江,杨劲松,谢文萍,等.江苏沿海某设施农区土壤重金属累积特点及生态风险评价[J].农业环境科学学报,2016,35(8):1498-1506.
    [38]邓琴,吴迪,秦樊鑫,等.岩溶铅锌矿区土壤重金属污染特征[J].中国岩溶,2016,36(2):248-254.
    [39]陆泗进,何立环,王业耀.湖南省桂阳县某铅锌矿周边农田土壤重金属污染及生态风险评价[J].环境化学,2015,34(3):591-592.
    [40]郑江鹏,矫新明,方南娟,等.江苏近岸海域沉积物重金属来源及风险评价[J].中国环境科学,2017,37(4):1514-1522.
    [41]Xiao Q,Zong Y T,Luo S G.Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city(Anshan),Liaoning,Northeast China[J].Ecotoxicology&Environmental Safety,2015,120:377-385.
    [42]廖国礼,吴超.矿山不同片区土壤中Zn、Pb、Cd、Cu和As的污染特征[J].环境科学,2005,26(3):157-161.
    [43]李晓艳,吴超.某铅锌矿区公路两侧土壤重金属污染分布研究[J].环境工程,2017,35(1):137-140.
    [44]李仲根,冯新斌,闭向阳,等.贵州省某土法炼锌点土壤重金属污染现状[J].生态学杂志,2011,30(5):897-901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700