新型基于烷氧噻吩炔的共轭聚合物受体的设计、合成及光伏性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymer Acceptors Based on Alkoxy Substituted Diethynylthiophene
  • 作者:刘孝诚 ; 伍世豪 ; 胡志诚 ; 唐浩然 ; 凌浩 ; 黄飞
  • 英文作者:LIU Xiao-cheng;WU Shi-hao;HU Zhi-cheng;TANG Hao-ran;LING Hao;HUANG Fei;State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering,South China University of Technology;South China Institute of Collaborative Innovation;
  • 关键词:烷氧噻吩炔 ; 共轭聚合物受体 ; 全聚合物太阳电池
  • 英文关键词:Alkoxy-substituted thiophene;;Conjugated polymer acceptors;;All-polymer solar cells
  • 中文刊名:GFZT
  • 英文刊名:Polymer Bulletin
  • 机构:华南理工大学发光材料与器件国家重点实验室;华南协同创新研究院;
  • 出版日期:2019-01-18 19:05
  • 出版单位:高分子通报
  • 年:2019
  • 期:No.238
  • 基金:国家自然科学基金(21634004,51403070)
  • 语种:中文;
  • 页:GFZT201902007
  • 页数:11
  • CN:02
  • ISSN:11-2051/O6
  • 分类号:55-65
摘要
设计合成了两个新型基于烷氧噻吩炔单元的共轭聚合物受体(PTO和NTO)。PTO和NTO的给体单元为烷氧基取代的噻吩,受体单元分别为苝二酰亚胺(PDI)和萘二酰亚胺(NDI),炔键作为连接桥键。两个共轭聚合物受体都具有较宽的吸收光谱和较浅的最低未占有轨道(LUMO)能级(>-3.80eV)。我们采用中等带隙的PBDB-T作为给体材料,PTO、NTO分别作为电子受体材料,制备了全聚合物太阳电池器件。基于NTO的电池器件可以获得3.7%的能量转化效率,高于基于PTO的电池器件效率(2.8%)。这主要是因为,基于NTO的电池器件具有更高的开路电压(V_(oc))和载流子迁移率。
        Two novel conjugated polymer acceptors(PTO and NTO) were designed and synthesized. PTO and NTO possess alkoxy-substituted thiophene as electron donor moiety and ethynyl moiety as the π-bridge in the conjugated polymer backbone, while perylene diimide(PDI) or naphdiimide(NDI) moiety are used as electron acceptor moiety in their conjugated polymer backbones. Both PTO and NTO exhibited broad light-absorption spectra and low lowest unoccupied molecular orbital energy levels(>-3.80 eV). All-polymer solar cells(all-PSCs) were fabricated using these copolymers as electron acceptors and a medium-bandgap conjugated polymer, PBDB-T, as the electron donor. The resulting all-PSCs based on NTO exhibited a power conversion efficiency of 3.7%, which is higher than that of the devices with PTO as acceptor(2.8%). The performance improvement was attributed to the higher open-circuit voltage, greater charge carrier mobility of the PBDB-T:NTO based devices.
引文
[1] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789~1791.
    [2] Cheng Y J, Yang S H, Hsu C S. Chem Rev, 2009, 109(11): 5868~5923.
    [3] Li Y F. Acta Phys-Chim Sin, 2017, 33 (3): 447~448.
    [4] Kim T, Kim J H, Kang T E, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim T S, Kim B J. Nat Commun, 2015, 6: 8547.
    [5] Zhao R Y, Dou C D, Xie Z Y, Liu J, Wang L X. Angew Chem Int Ed, 2016, 55(17): 5313~5317.
    [6] Li Y H, Yang Y, Bao X C, Qiu M, Liu Z T, Wang N, Zhang G X, Yang R Q, Zhang D Q. J Mater Chem C, 2016, 4(1): 185~192.
    [7] Guo Y K, Li Y K, Awartani O, Han H, Zhang G Y, Ade H, Yan H, Zhao D H. Mater Chem Front, 2017, 1(7): 1362~1368.
    [8] Zhang Z G, Yang Y K, Yao J, Xue L W, Chen S S, Li X J, Morrison W, Yang C, Li Y F. Angew Chem Int Ed, 2017, 129(43): 13688~13692.
    [9] Dai S X, Huang S, Yu H F, Ling Q D, Zhan X W. J Polym Sci Part A Polym Chem, 2017, 55(4): 682~689.
    [10] Fan B B, Zhu P, Xin J M, Li N, Ying L, Zhong W K, Li Z Y, Ma W, Huang F, Cao Y. Adv Energy Mater, 2018, 8(14): 1703085.
    [11] Hu Z C, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60(5): 571~582.
    [12] Zhang K, Xia R X, Fan B B, Liu X, Wang Z F, Dong S, Yip H L, Ying L, Huang F, Cao Y. Adv Mater, 2018, 30(36): 1803166.
    [13] Kang H, Lee W, Oh J, Kim T, Lee C, Kim B J. Acc Chem Res, 2016, 49(11): 2424~2434.
    [14] Choi J, Kim K H, Yu H, Lee C, Kang H, Song I, Kim Y, Oh J H, Kim B J. Chem Mater, 2015, 27(15): 5230~5237.
    [15] Ye L, Jiao X C, Zhao W C, Zhang S Q, Yao H F, Li S S, Ade H, Hou J H. Chem Mater, 2016, 28(17): 6178~6185.
    [16] Dai S X, Cheng P, Lin Y Z, Wang Y F, Ma L C, Ling Q D, Zhan X W. Polym Chem, 2015, 6(29): 5254~5263.
    [17] Yang J, Chen F, Xiao B, Sun S, Sun X N, Tajima K, Tang A, Zhou E J. Sol RRL, 2018, 2(4): 1700230.
    [18] Jung I H, Zhao D L, Jang J, Chen W, Landry E S, Lu L Y, Talapin D V, Yu L P. Chem Mater, 2015, 27(17): 5941~5948.
    [19] Zhang Y D, Wan Q, Guo X, Li W B, Guo B, Zhang M J, Li Y F. J Mater Chem A, 2015, 3(36): 18442~18449.
    [20] Yan H, Chen Z H, Zheng Y, Newman S, Quinn J R, D?tz F, Kastler M, Facchetti A. Nature, 2009, 457(7230): 679.
    [21] Gao L, Zhang Z G, Xue L W, Min J, Zhang J Q, Wei Z X, Li Y F. Adv Mater, 2016, 28(9): 1884~1890.
    [22] Fan B B, Ying L, Zhu P, Pan F L, Liu F, Chen J W, Huang F, Cao Y. Adv Mater, 2017, 29(47): 1703906.
    [23] Zhan X W, Tan Z A, Domercq B, An Z S, Zhang X, Barlow S, Li Y F, Zhu D B, Kippelen B, Marder S R. J Am Chem Soc, 2007, 129(23): 7246~7247.
    [24] Zhou Y, Kurosawa T, Ma W, Guo Y K, Fang L, Vandewal K, Diao Y, Wang C G, Yan Q F, Reinspach J, Mei J G, Appleton A L, Koleilat G I, Gao Y L, Mannsfeld S C B, Salleo A, Ade H, Zhao D H, Bao Z N. Adv Mater, 2014, 26(22): 3767~3772.
    [25] Li S S, Zhang H, Zhao W C, Ye L, Yao H F, Yang B, Zhang S Q, Hou J H. Adv Energy Mater, 2016, 6(5): 1501991.
    [26] Guo Y K, Li Y K, Awartani O, Zhao J B, Han H, Ade H, Zhao D H, Yan H. Adv Mater, 2016, 28(38): 8483~8489.
    [27] Guo Y K, Li Y K, Awartani O, Han H, Zhao J B, Ade H, Yan H, Zhao D H. Adv Mater, 2017, 29(26): 1700309.
    [28] Hwang Y J, Courtright B A E, Ferreira A S, Tolbert S H, Jenekh S A. Adv Mater, 2015, 27(31): 4578~4584.
    [29] Ye L, Jiao X C, Zhang H, Li S S, Yao H F, Ade H, Hou J H. Macromolecules, 2015, 48(19): 7156~7163.
    [30] Chang H, Chen Z M, Yang X Y, Yin Q W, Zhang J, Ying L, Jiang X F, Xu B M, Huang F, Cao Y. Org Electron, 2017, 45: 227~233.
    [31] Xiong W T, Meng X Y, Liu T, Cai Y H, Xue X N, Li Z B, Sun X B, Huo L J, Ma W, Sun Y M. Org Electron, 2017, 50: 376~383.
    [32] Chen D, Yao J, Chen L, Yin J P, Lv R Z, Huang B, Liu S Q, Zhang Z G, Yang C H, Chen Y W, Li Y F. Angew Chem Int Ed, 2018, 57(17): 4580~4584.
    [33] Ji C Y, Yin L X, Li K C, Wang L H, Jiang X Y, Sun Y J, Li Y Q. RSC Adv, 2015, 5(40): 31606~31614.
    [34] Gao K, Li L S, Lai T Q, Xiao L G, Huang Y, Huang F, Peng J B, Cao Y, Liu F, Russell T P, Janssen R A J, Peng X B. J Am Chem Soc, 2015, 137(23): 7282~7285.
    [35] Niu Q F, Lu Y Q, Sun H J, Li X Y, Tao X T. Dyes and Pigments, 2013, 97(1): 184~197.
    [36] Zhang C H, Wang L P, Tan W Y, Wu S P, Liu X P, Yu P P, Huang J, Zhu X H, Wu H B, Zhao C Y, Peng J B, Cao Y. J Mater Chem C, 2016, 4(17): 3757~3764.
    [37] Burke D J, Lipomi D J. Energy Environ Sci, 2013, 6(7): 2053~2066.
    [38] Carsten B, He F, Son H J, Xu T, Yu L P. Chem Rev, 2011, 111(3): 1493~1528.
    [39] Po R, Bernardi A, Calabrese A, Carbonera C, Corso G, Pellegrino A. Energy Environ Sci, 2014, 7(3): 925~943.
    [40] Zhang W, Tao F, Xi L Y, Meng K G, Wang Z, Li Y, Jiang Q. J Mater Sci, 2012, 47(1): 323~331.
    [41] Hahm S G, Rho Y, Jung J, Kim S H, Sajoto T, Kim F S, Barlow S, Park C E, Jenekhe S A, Marder S R, Ree M. Adv Funct Mater, 2013, 23(16): 2060~2071.
    [42] Jia T, Zheng N N, Cai W Q, Zhang J, Ying L, Huang F, Cao Y. Chinese J of Polym Sci, 2017, 35(2): 269~281.
    [43] Hu Z C, Chen Z M, Zhang K, Zheng N N, Xie R H, Liu X, Yang X Y, Huang F, Cao Y. Sol RRL, 2017, 1(6): 1700055.
    [44] Brown P J, Thomas D S, K?hler A, Wilson J S, Kim J S, Ramsdale C M, Sirringhaus H, Friend R H. Phys Rev B, 2003, 67(6): 064203.
    [45] Hu Z C, Huang F, Cao Y. Small Methods, 2017, 1(12): 1700264.
    [46] Liu X, Chen Z M, Xu R G, Zhang R W, Hu Z C, Huang F, Cao Y. Small Methods, 2018, 2(4): 1700407.
    [47] Liu S J, Zhang G C, Lu J M, Jia J C, Li W, Huang F, Cao Y. J Mater Chem C, 2015, 3(17): 4372~4379.
    [48] Feng S Y, Zhang C E, Liu Y H, Bi Z Z, Zhang Z, Xu X J, Ma W, Bo Z S. Adv Mater, 2017, 29(42): 1703527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700