冰箱微通道换热器积灰机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism Investigation of Air-side Fouling on Micro-channel Heat Exchanger for Refrigerator
  • 作者:刘金伟 ; 蒋甫政 ; 何柳 ; 滕世政 ; 陈江平
  • 英文作者:Liu Jinwei;Jiang Fuzheng;He Liu;Teng Shizheng;Chen Jiangping;Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University;Shanghai High Efficient Cooling System Research Center;
  • 关键词:微通道换热器 ; 灰尘沉积 ; 风速 ; 灰尘种类 ; 相对湿度 ; 带电状况
  • 英文关键词:micro-channel heat exchanger(MHE);;particle deposition;;air velocity;;type of dust;;relative humility;;charged condition
  • 中文刊名:ZLXB
  • 英文刊名:Journal of Refrigeration
  • 机构:上海交通大学制冷与低温工程研究所;上海市高效冷却系统工程技术中心;
  • 出版日期:2019-02-16
  • 出版单位:制冷学报
  • 年:2019
  • 期:v.40;No.185
  • 语种:中文;
  • 页:ZLXB201901002
  • 页数:8
  • CN:01
  • ISSN:11-2182/TB
  • 分类号:11-18
摘要
冰箱微通道换热器表面灰尘沉积会导致空气侧压降增加,造成换热性能衰减。本文通过搭建微通道换热器积灰模拟实验台,研究了风速、灰尘种类、相对湿度、是否带电4个因素对微通道换热器积灰的影响。结果表明:低风速下,灰尘沉积在翅片迎风表面,较高风速时,积灰向翅片后缘扩展。粉末状灰尘几乎不能堆积,随着灰尘中纤维比例的增加,积灰速度也越来越快。当风速为1 m/s,风机固定功率下,100%颗粒、95%颗粒+5%纤维、92%颗粒+5%纤维+3%长纤维3种不同灰尘工况时,空气侧压降增长率分别为8.8%、451.4%、524.9%。95%颗粒+5%纤维和92%颗粒+5%纤维+3%长纤维不同灰尘工况下风量衰减率分别为31.6%和48.7%。当相对湿度为45%和65%时,空气侧压降增长率分别为451.4%和385.6%,风量衰减率分别为31.7%和26.4%。不带电和直流电5 V工况下的空气侧压降增加率分别为385.6%和278.3%,风量衰减率分别为26.4%和18.4%。
        The air-side pressure drop of micro-channel heat exchanger(MHE) is increased and the heat exchange performance is attenuated when the MHE is covered with dust particles. In this study, a visual experimental rig was set up to investigate the effect of air velocity, type of dust, relative humidity and whether the MHE is charged or not on dust accumulation. The experimental results indicate that dust particles were mostly deposited on the windward side of the slit fins and at the front part of the tubes at an air velocity of 1 m/s. The dust extended to the trailing edge of the fin at higher wind speed. When only particle dust was present, dust could hardly accumulate. However, as the fiber content increased, the particle-deposition process accelerated. Under the conditions of 100% particle, 95% particle+5% fiber, and 92% particle+5% fiber+3% long fiber, the air-side pressure drop were increased by 8.8%, 451.4%, and 524.9%, respectively. Under the conditions of 95% particle+5% fiber and 92% particle+5% fiber+3% long fiber, the air volume were decreased by 31.6% and 48.7%. When the air relative humility was 45% and 65%, the air-side pressure drop were increased by 451.4% and 385.6%, and the air volume were decreased by 31.7% and 26.4%. When the MHE was not charged or was charged by an direct current at 5 V, the air-side pressure drop were increased by 385.6% and 278.3%, and the air volume were decreased by 26.4% and 18.4%, respectively.
引文
[1] 韩月梅, 沈振兴, 曹军骥,等. 室内外细粒子PM2.5和总悬浮颗粒物污染水平的对比研究[J]. 中国粉体技术, 2009, 15(2): 14-17. (HAN Yuemei, SHEN Zhenxing, CAO Junji, et al. Comparative study on pollution levels of fine particles PM2.5 and total suspended particulates in indoor and outdoor areas[J]. China Powder Technology, 2009, 15(2):14-17.)
    [2] CHANG Y J, WANG C C. A generalized heat transfer correlation for louver fin geometry[J]. International Journal of Heat & Mass Transfer, 1997, 40(3):533-544.
    [3] BELL I H, GROLL E A, K?NIG H. Experimental analysis of the effects of particulate fouling on heat exchanger heat transfer and air-side pressure drop for a hybrid dry cooler[J]. Heat Transfer Engineering, 2011, 32(3/4): 264-271.
    [4] AHN Y C, CHO J M, SHIN H S, et al. An experimental study of the air-side particulate fouling in fin-and-tube heat exchangers of air conditioners[J]. Korean Journal of Chemical Engineering, 2003, 20(5):873-877.
    [5] PU Hui, DING Guoliang, MA Xiaokui, et al. Effects of biofouling on air-side heat transfer and pressure drop for finned tube heat exchangers[J]. International Journal of Refrigeration, 2009, 32(5):1032-1040.
    [6] 梁欣, 王美, 高强,等. 百叶窗波纹翅片换热器的积灰试验研究[J]. 制冷与空调(北京), 2016, 16(8):45-48.(LIANG Xin, WANG Mei, GAO Qiang, et al. Study on the ash test of blinds corrugated fin heat exchanger[J]. Refrigeration and Air-conditioning, 2016, 16(8):45-48.)
    [7] YAN Zhibin, HUANG Xiaoyang, YANG Chun. Particulate fouling and mitigation approach in microchannel heat exchanger[C]//ASME 2016, 5th International Conference on Micro/Nanoscale Heat and MASS Transfer. 2016.
    [8] LANKINEN R, SUIHKONEN J, SARKOMAA P. The effect of air side fouling on thermal-hydraulic characteristics of a compact heat exchanger[J]. International Journal of Energy Research, 2003, 27(4):349-361.
    [9] 唐家俊, 詹飞龙, 胡海涛,等. 开缝翅片管换热器表面积尘与压降特性的实验研究[J]. 制冷学报, 2016, 37(6): 1-6. (TANG Jiajun, ZHAN Feilong, HU Haitao, et al. Experimental research on the characteristics of surface dust and pressure drop of slotted fin tube heat exchangers [J]. Journal of Refrigeration, 2016, 37(6): 1-6.)
    [10] BELL I H, GROLL E A. Air-side particulate fouling of microchannel heat exchangers: Experimental comparison of air-side pressure drop and heat transfer with plate-fin heat exchanger[J]. Applied Thermal Engineering, 2011, 31(5):742-749.
    [11] LI Yang, BRAUN J E, GROLL E A. The impact of fouling on the performance of filter-evaporator combinations[J]. International Journal of Refrigeration, 2007, 30(3):489-498.
    [12] BELL I H, GROLL E A. Experimental comparison of the impact of air-side particulate fouling on the thermo-hydraulic performance of microchannel and plate-fin heat exchangers[C]//International Refrigeration and Air Conditioning Conference. Purdue,2010:1-10.
    [13] 徐博. 微通道换热器在家用分体空调应用的关键问题研究[D]. 上海:上海交通大学, 2014. (XU Bo. The key problems of the application of the micro channel heat exchanger in the household air conditioning system[D]. Shanghai: Shanghai Jiao Tong University, 2014.)
    [14] MASON D, HEIKAL M, DOUCH N. Air side fouling of compact heat exchangers[J]. International Journal of Heat Exchangers, 2006, 7(1): 1-14.
    [15] MWABA M G, GOLRIZ M R, GU J. A semi-empirical correlation for crystallization fouling on heat exchange surfaces[J]. Applied Thermal Engineering, 2006, 26(4):440-447.
    [16] SIEGEL J A, CAREY V P. Fouling of HVAC heat exchangers[C]//United Engineering Foundation Conference on Heat Exchanger Fouling. 2001.
    [17] 施骏业, 陈晓宁, 陆冰清,等. 颗粒物污染室外换热器对家用空调系统性能影响研究[J]. 制冷学报, 2016, 37(5):87-92. (SHI Junye, CHEN Xiaoning, LU Bingqing, et al. Research on the impact of particulate fouling outdoor heat exchanger on the system performance of the residential air conditioner[J]. Journal of Refrigeration, 2016, 37(5): 87-92.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700