用户名: 密码: 验证码:
Fe~(2+)/过氧化物体系氧化活性及其处理生活污水效果比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparisons of oxidation activity in the Fe~(2+)/peroxide system applied to domestic sewage treatment processes
  • 作者:吴桐 ; 黄雪 ; 刘伟 ; 刘大会 ; 蔡建波 ; 朱端卫
  • 英文作者:WU Tong;HUANG Xue;LIU Wei;LIU Da-hui;CAI Jian-bo;ZHU Duan-wei;Laboratory of Eco-environmental Engineering Research, College of Resources and Environment of Huazhong Agricultural University;Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology(Shandong Academy of Sciences);Pharmacy Faculty, Hubei University of Chinese Medicine;Cooperative Innovation Center for Sustainable Pig Production;
  • 关键词:Fe2+ ; 过氧化物 ; COD ; 氧化能力 ; 絮凝作用
  • 英文关键词:Fe2+;;peroxides;;COD;;oxidation ability;;flocculation
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:华中农业大学资源与环境学院生态与环境工程研究室;齐鲁工业大学(山东省科学院)山东省分析测试中心山东省中药质量控制技术重点实验室;湖北中医药大学药学院;湖北省生猪健康养殖协同创新中心;
  • 出版日期:2019-01-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.281
  • 基金:国家滇池水体污染控制与治理科技重大专项课题(2012ZX07102-003-03);; 山东省自然科学基金项目(ZR2016YL006)~~
  • 语种:中文;
  • 页:NHBH201901026
  • 页数:8
  • CN:01
  • ISSN:12-1347/S
  • 分类号:199-206
摘要
为了加快对分散性生活污水的有效治理,利用过氧化钙、过氧化镁及过氧化锌与Fe2+形成不同类芬顿体系,通过亚甲基蓝溶液在被氧化过程中的色度变化,考察了体系的氧化能力,在此基础上比较了体系对于生活污水中COD的去除效果。结果表明,在Fe2+/过氧化物为1∶2的最佳摩尔比下,pH越低,Fe2+/过氧化物的氧化能力越强;同时,过氧化物氧化亚甲基蓝过程可用一级反应动力学模型来拟合,比较过氧化钙、过氧化镁和过氧化锌,Fe2+/CaO2体系的氧化反应速率最大,其速率常数k可达2.55 min-1。用修正的Gompertz模型拟合表明,3种过氧化物在生活污水中释氧速率也是Fe2+/CaO2体系最快。摩尔比为1∶2的Fe2+/过氧化物体系在污水初始pH为3时,CaO2对污水COD的去除效果最好,COD的去除率达到74.9%;随着溶液pH的提高,MgO2、ZnO2对COD的作用受pH影响比CaO2更明显;Fe2+/过氧化物体系在自然酸度条件下对COD的去除表现为Fe2+的絮凝作用为主,当初始酸度调节至pH=5时,这一体系对COD的氧化作用明显加强。通过对Fe2+/过氧化物类芬顿体系作用与性能之比较,明确了Fe2+/CaO2更适合用于生活污水中COD的去除。
        Peroxides, such as calcium peroxide, magnesium peroxide, and zinc peroxide, have been used as chemical reagents of the Fenton-like system. In this study, the oxidation ability of these compounds with Fe~(2+)was investigated by monitoring the color change of methylene blue in solutions, with a focus on the removal efficiency of the chemical oxygen demand(COD)in domestic sewage. Under the optimum molar ratio of Fe~(2+)to peroxides, 1∶2, the highest oxidation ability was reached and simulated with the first order kinetic equation.Comparing Fe~(2+)/MgO2, Fe~(2+)/ZnO2, and Fe~(2+)/CaO2, the reaction rate of the Fe~(2+)/CaO2-methylene blue system was the highest, with a constant rate of 2.55 min-1. Moreover, the fitting of the modified Gompertz model showed that the rate of oxygen release of Fe~(2+)/CaO2 among the three kinds of peroxides was also the highest. As a consequence, COD removal in domestic sewage by using Fe~(2+)/peroxides with a molar ratio of 1∶2 showed a maximum removal efficiency for COD, especially for wastewater at pH 3, where the removal rate of COD approached 74.9%.With increasing pH(>3.0), the removal of COD by MgO2 or ZnO2 was mainly affected by the pH of the domestic sewage. For the natural acidity, the removal of COD by Fe~(2+)/peroxide systems was mainly caused by the flocculation of Fe~(2+), and the oxidation ability of the system would be much stronger when the initial pH was adjusted to 5.0.
引文
[1] Huang P, Guo Y G, Lou X Y, et al. Survey of rural domestic sewage treatment systems of Songjiang district in Shanghai, China[J]. Advanced Materials Research, 2012, 573-574:511-515.
    [2] Tang J, Shi T Z, Wu X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China:Seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122:154-161.
    [3] Hayley A, Deborah K, Melinda J. Quantification of human-associated fecal indicators reveal sewage from urban watersheds as a source of pollution to Lake Michigan[J]. Water Research, 2016, 100:556-567.
    [4] Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452:301-310.
    [5]王妙,张华俊,陈海峰,等.沸石联合过氧化钙对黑臭河道底泥营养盐释放的作用研究[J].广东化工, 2017, 44(342):36-37.WANG Miao, ZHANG Hua-jun, CHEN Hai-feng, et al. The control of zeolite combined with calcium peroxide on nutrients release from sediment in malodorous rivers[J]. Guangdong Chemical Industry, 2017, 44(342):36-37.
    [6]王熙,孙飞云,董文艺.用过氧化钙控制城市河道底泥嗅味物质及氮磷释放试验研究[J].水利水电技术, 2012, 43(8):66-69.WANG Xi, SUN Fei-yun, DONG Wen-yi. The experimental study on the control of the odor substances, nitrogen and phosphorus release in sediment of urban river channel with calcium peroxide[J]. Water Resources and Hydropower Engineering, 2012, 43(8):66-69.
    [7] Nyk?nen A, Kontio H, Klutas O, et al. Increasing lake water and sediment oxygen levels using slow release peroxide[J]. Science of the Total Environment, 2012, 429:317-324.
    [8] Wang H F, Zhao Y S, Li T Y, et al. Properties of calcium peroxide for release of hydrogen peroxide and oxygen:A kinetics study[J]. Chemical Engineering Journal, 2016, 303:450-457.
    [9] Zhang X, Gu X G, Lu S G, et al. Application of calcium peroxide activated with Fe(Ⅱ)-EDDS complex in trichloroethylene degradation[J].Chemosphere, 2016, 160:1-6.
    [10] Xue Y F, Gu X G, Lu S G, et al. The destruction of benzene by calcium peroxide activated with Fe(Ⅱ)in water[J]. Chemical Engineering Journal, 2016, 302:187-193.
    [11] Qian Y J, Zhang J, Zhang Y L, et al. Degradation of 2, 4-dichlorophenol by nanoscale calcium peroxide:Implication for groundwater remediation[J]. Separation and Purification Technology, 2016, 166:222-229.
    [12] Goi A, Viisimaa M, Trapido M, et al. Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides[J]. Chemosphere, 2011, 82:1196-1201.
    [13]翟永清,于士文,姚子华,等. CaO2/H+/FeSO4体系处理染料废水的研究[J].工业水处理, 2003(10):24-26.ZHAI Yong-qing, YU Shi-wen, YAO Zi-hua, et al. Study on the treatment of dye wastewater by CaO2/H+/FeSO4 system[J]. Industrial Water Treatment, 2003(10):24-26.
    [14]徐苏云,何品晶,唐琼瑶,等. Fenton法处理类长填龄渗滤液的氧化和絮凝作用[J].环境科学研究, 2008, 21(4):20-24.XU Su-yun, HE Pin-jing, TANG Qiong-yao, et al. Roles of oxidation and coagulation during Fenton treatment of mature leachate[J]. Research of Environmental Sciences, 2008, 21(4):20-24.
    [15] Zang C, Zhang X, Hu S, et al. The role of exposed facets in the Fenton-like reactivity of CeO2 nanocrystal to the OrangeⅡ[J]. Applied Catalysis B:Environmental, 2017, 216:106-113.
    [16] Arienzo M. Degradation of 2, 4, 6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound[J]. Chemosphere, 2000,40(4):331-337.
    [17] Zhang X, Gu X G, Lu S G, et al. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion[J].Journal of Hazardous Materials, 2015, 284:253-260.
    [18] Northup A, Cassidy D. Calcium peroxide(CaO2)for use in modified Fenton chemistry[J]. Journal of Hazardous Materials, 2008, 152(3):1164-1170.
    [19]刘娇,孟范平,王震宇.亚甲基蓝光度法研究基于CaO2的Fenton反应条件[J].化工学报, 2011, 62(9):2521-2525.LIU Jiao, MENG Fan-ping, WANG Zhen-yu. Study on condition of CaO2-based Fenton reaction by methylene blue spectrophotometric method[J]. CIESC Journal, 2011, 62(9):2521-2525.
    [20]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.State Environmental Protection Administration. Method for monitoring and analyzing water and wastewater[M]. 4th Edition. Beijing:China Environmental Science Press, 2002.
    [21]赵娜娜,于淼,汪群慧,等.乙醇预发酵对餐厨垃圾甲烷发酵动力学特性及底物的影响[J].环境工程, 2017, 35(1):108-122.ZHAO Na-na, YU Miao, WANG Qun-hui, et al. Effects of ethanol pre-fermentation on the kinetics and substrate of methane fermentation of food waste[J]. Environmental Engineering, 2017, 35(1):108-122.
    [22] Yu W, Yang J, Shi Y, et al. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton′s reagent and lime[J]. Water Research, 2016, 95:124-133.
    [23] Kang Y W, Hwang K Y. Effects of reaction could conditions on the oxidation efficiency in the Fenton process[J]. Water Research, 2000, 34:2786-2790.
    [24] Wang H, Zhao Y, Li T, et al. Properties of calcium peroxide for release of hydrogen peroxide and oxygen:A kinetics study[J]. Chemical Engineering Journal, 2016, 303:450-457.
    [25] Lu W H, Xiang X Q, Yang L, et al. The temporal-spatial distribution and changes of dissolved oxygen in the Changjiang Estuary and its adjacent waters for the last 50 a[J]. Acta Oceanologica Sinica, 2017, 36(5):90-98.
    [26]张盛汉,谭德俊,陈泉源.硫酸亚铁/过硫酸钾体系深度处理印染废水[J].东华大学学报(自然科学版), 2013, 39(6):814-817.ZHANG Sheng-han, TAN De-jun, CHEN Quan-yuan. Application of ferrous sulphate/potassium peroxydisulfate in dyeing wastewater tertiary treatment[J]. Journal of Donghua University(Natural Science Edition), 2013, 39(6):814-817.
    [27] Esch T R, Bredow T. Bulk and surface properties of magnesium peroxide MgO2[J]. Applied Surface Science, 2016, 389:1202-1207.
    [28] Ginos A, Manios T, Mantzavinos D. Treatment of olive mill effluents by coagulation-flocculation-hydrogen peroxide oxidation and effect on phytotoxicity[J]. Journal of Hazardous Materials, 2006, 133(1):135-142.
    [29]黄雪.过氧化物对生活污水的处理及其效果研究[D].武汉:华中农业大学, 2016.HUANG Xue. The study of effects on treating sewage with peroxides[D]. Wuhan:Huazhong Agricultural University, 2016
    [30] Chen Z, Zhang W J, Wang D S, et al. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation[J]. Water Research, 2016, 103:170-181.
    [31] Gulkaya I, Surucu G A, Dilek F B. Importance of H2O2/Fe2+ratio in Fenton′s treatment of a carpet dyeing wastewater[J]. Journal of Hazardous Materials, 2006, 136(3):763-769.
    [32] Maurer D L, Koziel J A, Bruning K, et al. Farm-scale testing of soybean peroxidase and calcium peroxide for surficial swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions[J]. Atmospheric Environment, 2017, 166:467-478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700