Mg_2Si_(0.3)Sn_(0.7)掺杂Ag和Li的热电性能对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative study of thermoelectric properties of Mg_2Si_(0.3)Sn_(0.7) doped by Ag or Li
  • 作者:袁国才 ; 陈曦 ; 黄雨阳 ; 毛俊西 ; 禹劲秋 ; 雷晓波 ; 张勤勇
  • 英文作者:Yuan Guo-Cai;Chen Xi;Huang Yu-Yang;Mao Jun-Xi;Yu Jin-Qiu;Lei Xiao-Bo;Zhang Qin-Yong;School of Materials Science and Engineering, Xihua University;Xihua Honor College, Xihua University;
  • 关键词:Mg2Si0.3Sn0.7 ; 热电性能 ; 掺杂 ; 晶格热导率
  • 英文关键词:Mg2Si0.3Sn0.7;;thermoelectric performance;;doping;;lattice thermal conductivity
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西华大学材料科学与工程学院;西华大学西华学院;
  • 出版日期:2019-06-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:51572226);; 四川省科技支撑计划(批准号:2015GZ0060);; 国家创新创业训练项目(批准号:201710623)资助的课题~~
  • 语种:中文;
  • 页:WLXB201911027
  • 页数:9
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:227-235
摘要
采用两步固相法合成了物相均匀的Mg_(2(1–x))Ag_(2x)Si_(0.3)Sn_(0.7)(x=0,0.01,0.02,0.03,0.04,0.05)和Mg_(2(1–y))Li_(2y)Si_(0.3)Sn_(0.7) (y=0, 0.02, 0.04, 0.06, 0.08)热电材料,测试了室温物理性能和室温至773 K的热电性能,研究了不同掺杂剂的固溶度、微观结构、载流子浓度、电性能和热输运. X射线衍射图谱和扫描电子显微镜图像显示掺杂Ag和Li的固溶度分别为x=0.03和y=0.06.根据单抛物线模型, p型的Mg_(2(1–x))Ag_(2x)Si_(0.3)Sn_(0.7)和Mg_(2(1–y))Li_(2y)Si_(0.3)Sn_(0.7)的有效质量为1.2m0.对比结果表明:掺杂Ag或Li的最大载流子浓度分别达到4.64×1019 cm~(–3)和15.1×1019 cm~(–3);掺杂Li元素的样品有较高的固溶度、较高的载流子浓度和较高的功率因子PF约为1.62×10~(–3) W·m~(–1)·K~(–2);掺杂Li元素样品中较高的载流子浓度能够有效抑制双极效应,显著降低双极热导率; Mg_(1.92)Li_(0.08)Si_(0.3)Sn_(0.7)的最大ZT值0.54,比Mg1.9Ag0.1Si0.3Sn0.7的最大ZT值0.34提高了大约58%.根据Callaway理论,由于质量场波动和应变场波动增强声子散射,掺杂Ag和Li元素样品的晶格热导率比未掺杂样品明显降低.
        In recent decades, Mg_2(Si, Sn) solid solutions have long been considered as one of the most important classes of eco-friendly thermoelectric materials. The thermoelectric performance of Mg_2(Si, Sn) solid solutions with outstanding characteristics of low-price, non-toxicity, earth-abundant and low-density has been widely studied. The n-type Mg2(Si, Sn) solid solutions have achieved the dimensionless thermoelectric figure of merit ZT ~1.4 through Bi/Sb doping and convergence of conduction bands. However, the thermoelectric performances for p-type Mg2(Si, Sn) solid solutions are mainly improved by optimizing the carrier concentration. In this work,the thermoelectric properties for p-type Mg_2Si_(0.3)Sn_(0.7) are investigated and compared with those for different ptype dopant Ag or Li. The homogeneous Mg_2Si_(0.3)Sn_(0.7) with Ag or Li doping is synthesized by two-step solidstate reaction method at temperatures of 873 K and 973 K for 24 h, respectively. The transport parameters and the thermoelectric properties are measured at temperatures ranging from room temperature to 773 K for Mg_(2(1–x))Ag_(2x)Si_(0.3)Sn_(0.7)(x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) and Mg_(2(1–y))Li_(2y)Si_(0.3)Sn_(0.7)(y = 0, 0.02, 0.04, 0.06, 0.08)samples. The influences of different dopants on solid solubility, microstructure, carrier concentration, electrical properties and thermal transport are also investigated. The X-ray diffraction(XRD) patterns and scanning electron microscopy(SEM) images show that the solid solubility for Ag and for Li are x = 0.03 and y = 0.06,respectively. Based on the assumption of single parabolic band model, the value of effective mass ~1.2 m0 of ptype Mg_(2(1–x))Ag_(2x)Si_(0.3)Sn_(0.7) and Mg_(2(1–y))Li_(2y)Si_(0.3)Sn_(0.7) are similar to that reported in the literature. The comparative results demonstrate that the maximum carrier concentration for Ag doping and for Li doping are 4.64×10~(19) cm~(–3) for x = 0.01 and 15.1×1019 cm~(–3) for y = 0.08 at room temperature, respectively; the Li element has higher solid solubility in Mg2(Si, Sn), which leads to higher carrier concentration and power factor PF~1.62×10~(–3) W · m~(–1)· K~(–2) in Li doped samples; the higher carrier concentration of Li doped samples effectively suppresses the bipolar effect; the maximum of ZT ~0.54 for Mg1.92 Li0.08 Si0.3 Sn0.7 is 58% higher than that of Mg1.9 Ag0.1 Si0.3 Sn0.7 samples. The lattice thermal conductivity of Li or Ag doped sample decreases obviously due to the stronger mass and strain field fluctuations in phonon transport.
引文
[1]Dresselhaus M S,Chen G,Tang M Y,Yang R G,Lee H,Wang D Z,Ren Z F,Fleurial J P,Gogna P 2007 Adv.Mater.19 1043
    [2]Snyder G J,Toberer E S 2008 Nat.Mater.7 105
    [3]Bell L E 2008 Science 321 1457
    [4]Zhu T,Liu Y,Fu C,Heremans J P,Snyder G J,Zhao X 2017Adv.Mater.29 1605884
    [5]Zhu H T,Ren W Y,Zhang Q Y,Ren Z F 2018 J.Xihua Univ.(Natural Science Edition)37 15(in Chinese)[朱航天,任武洋,张勤勇,任志锋2018西华大学学报(自然科学版)3715]
    [6]Pei Y,Shi X,Lalonde A,Wang H,Chen L,Snyder G J 2011Nature 473 66
    [7]Mao J,Wang Y,Ge B,Jie Q,Liu Z,Saparamadu U,Liu W,Ren Z 2016 Phys.Chem.Chem.Phys.18 20726
    [8]Lu Q,Wu M,Wu D,Chang C,Guo Y P,Zhou C S,Li W,Ma X M,Wang G,Zhao L D,Huang L,Liu C,He J 2017Phys.Rev.Lett.119 116401
    [9]Pei Y,Lalonde A D,Wang H,Snyder G J 2012 Energy Environ.Sci.5 7963
    [10]Zhang Q Y,Yuan G C,Wang J C,Mao J X,Lei X B 2018 J.Xihua Univ.(Natural Science Edition)37 1(in Chinese)[张勤勇,袁国才,王俊臣,毛俊西,雷晓波2018西华大学学报(自然科学版)37 1]
    [11]Paul B,Ajay Kumar V,Banerji P 2010 J.Appl.Phys.108064322
    [12]Xie W J,Yan Y G,Zhu S,Zhou M,Populoh S,Ga??zka K,Poon S J,Weidenkaff A,He J,Tang X F,Tritt T M 2013 Acta Mater.61 2087
    [13]Heremans J P,Wiendlocha B,Chamoire A M 2012 Energy Environ.Sci.5 5510
    [14]Zhang Q,Wang H,Liu W,Wang H,Yu B,Zhang Q,Tian Z,Ni G,Lee S,Esfarjani K,Chen G,Ren Z 2012 Energy Environ.Sci.5 5246
    [15]Zhou B Q,Li S,Li W,Li J,Zhang X Y,Lin S Q,Chen Z W,Pei Y Z 2017 ACS Appl.Mater.Interfaces 9 34033
    [16]Xiao Y,Wu H,Li W,Yin M,Pei Y,Zhang Y,Fu L,Chen Y,Pennycook S J,Huang L,He J,Zhao L D 2017 J.Am.Chem.Soc.139 18732
    [17]Wang J C,Yuan G C,Yu J Q,Mo X B,Jin Y R,Huang L H2018 Journal of Xihua University(Natural Science Edition)37 68(in Chinese)[王浚臣,袁国才,禹劲秋,莫小波,金应荣,黄丽宏2018西华大学学报(自然科学版)37 68]
    [18]de Boor J,Dasgupta T,Saparamadu U,Müller E,Ren Z F2017 Mater.Today Energy 4 105
    [19]Bashir M B A,Mohd Said S,Sabri M F M,Shnawah D A,Elsheikh M H 2014 Renewable and Sustainable Energy Reviews 37 569
    [20]Santos R,Aminorroaya Yamini S,Dou S X 2018 J.Mater.Chem.A 6 3328
    [21]Liu W,Yin K,Zhang Q,Uher C,Tang X 2017 Nat.Sci.Rev.4 611
    [22]Pulikkotil J J,Singh D J,Auluck S,Saravanan M,Misra DK,Dhar A,Budhani R C 2012 Phys.Rev.B 86 155204
    [23]Sun J,Singh D J 2016 Phys.Rev.Appl.5 024006
    [24]Tani J I,Kido H 2008 Intermetallics 16 418
    [25]Tani J I,Kido H 2012 Physica B 407 3493
    [26]Imai Y,Mori Y,Nakamura S,Takarabe K I 2013 J.Alloys Compd.549 175
    [27]Tani J I,Kido H 2008 J.Alloys Compd.466 335
    [28]Zhang Q,He J,Zhao X B,Zhang S N,Zhu T J,Yin H,Tritt T M 2008 J.Phys.D:Appl.Phys.41 185103
    [29]Luo W J,Yang M J,Fei C,Shen Q,Jiang H G,Zhang L M2010 Mater.Trans.51 288
    [30]Liu W,Tang X,Li H,Yin K,Sharp J,Zhou X,Uher C 2012J.Mater.Chem.22 13653
    [31]Ihou-Mouko H,Mercier C,Tobola J,Pont G,Scherrer H 2011J.Alloys Compd.509 6503
    [32]Tada S,Isoda Y,Udono H,Fujiu H,Kumagai S,Shinohara Y2014 J.Electron.Mater.43 1580
    [33]Zhang Q,Cheng L,Liu W,Zheng Y,Su X,Chi H,Liu H,Yan Y,Tang X,Uher C 2014 Phys.Chem.Chem.Phys.1623576
    [34]Tang X,Zhang Y,Zheng Y,Peng K,Huang T,Lu X,Wang G,Wang S,Zhou X 2017 Appl.Therm.Eng.111 1396
    [35]Yin K,Zhang Q,Zheng Y,Su X,Tang X,Uher C 2015 J.Mater.Chem.C 3 10381
    [36]Liu W,Chi H,Sun H,Zhang Q,Yin K,Tang X,Zhang Q,Uher C 2014 Phys.Chem.Chem.Phys.16 6893
    [37]de Boor J,Saparamadu U,Mao J,Dahal K,Müller E,Ren Z2016 Acta Mater.120 273
    [38]Saparamadu U,de Boor J,Mao J,Song S,Tian F,Liu W,Zhang Q,Ren Z 2017 Acta Mater.141 154
    [39]Gao P,Davis J D,Poltavets V V,Hogan T P 2016 J.Mater.Chem.C 4 929
    [40]Tang X,Wang G,Zheng Y,Zhang Y,Peng K,Guo L,Wang S,Zeng M,Dai J,Wang G,Zhou X 2016 Scripta Mater.11552
    [41]Kim H S,Gibbs Z M,Tang Y,Wang H,Snyder G J 2015APL Mater.3 041506
    [42]Yang J,Meisner G P,Chen L 2004 Appl.Phys.Lett.85 1140
    [43]Qin Y T,Qiu P F,Shi X,Chen L D 2017 J.Inorg.Mater.321171(in Chinese)[覃玉婷,仇鹏飞,史迅,陈立东2017无机材料学报32 1171]
    [44]Slack G A 1957 Phys.Rev.105 832
    [45]Abeles B 1963 Phys.Rev.131 1906

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700