开孔钢板装配式屈曲约束支撑钢框架抗震性能试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on seismic performance of perforated steel-plate assembled buckling-restrained braced steel frames
  • 作者:周云 ; 钟根全 ; 龚晨 ; 陈清
  • 英文作者:ZHOU Yun;ZHONG Genquan;GONG Chen;CHEN Qingxiang;School of Civil Engineering, Guangzhou University;School of Civil and Transportation Engineering, Guangdong University of Technology;Shanghai Unite Building Engineering Consulting Co., Ltd;
  • 关键词:钢框架 ; 屈曲约束支撑 ; 平面外变形 ; 拟静力试验 ; 抗震性能
  • 英文关键词:steel frame;;buckling-restrained brace;;out-of-plane deformation;;quasi-static test;;seismic performance
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:广州大学土木工程学院;广东工业大学土木与交通工程学院;上海优耐建筑工程咨询有限公司;
  • 出版日期:2018-12-17 17:02
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划(2017YCF0703600);; 广东工业大学校青年基金项目(15ZK0029)
  • 语种:中文;
  • 页:JZJB201903016
  • 页数:9
  • CN:03
  • ISSN:11-1931/TU
  • 分类号:156-164
摘要
为研究开孔钢板装配式屈曲约束支撑(buckling-restrained brace,BRB)钢框架的抗震性能及框架平面外变形对其抗震性能的影响,对两个相同设计的单层单跨单斜式开孔钢板装配式BRB钢框架分别就是否考虑框架平面外变形情况下进行了拟静力试验,并对相同设计的开孔钢板装配式BRB构件进行了拟静力试验。结果表明:不考虑框架平面外变形和考虑框架平面外变形10 mm的开孔钢板装配式BRB钢框架均表现出良好的滞回耗能性能,滞回曲线饱满且基本对称,满足GB 50011—2010《建筑抗震设计规范》最大弹塑性层间位移角1/50的限值要求;框架平面外变形10 mm对开孔钢板装配式BRB钢框架平面内抗震性能影响很小,其弹性水平刚度、层间屈服剪力和层间最大剪力受框架平面外变形的影响略为降低,变化范围均在5%以内;框架平面外变形10 mm对BRB轴向变形的影响很小,框架中开孔钢板装配式BRB和开孔钢板装配式BRB构件均具有良好的滞回性能,约在1/720层间位移角时先于钢框架进入屈服状态,发挥耗能作用,其滞回曲线饱满,延性良好,累积塑性变形能力系数均大于600,完全满足ANSI/AISC 341-10中要求的大于200的要求。
        To study the seismic performance of perforated steel-plate assembled buckling restrained braced(BRB) steel frames and particularly to examine the influence of out-of-plane deformation on the seismic performance of the frame, two one-story one-bay steel frames with perforated steel-plate assembled BRBs were designed. Quasi-static tests were conducted on the BRB steel frames with and without out-of-plane deformation, and also on an individual perforated steel-plate assembled BRB member with the same design. The results show that the perforated steel-plate assembled BRB frames exhibit good hysteretic energy dissipation performance provided that the out-of-plane deformation is less than 10 mm, and have good collapse resistance which meets the requirements of the maximum inelastic drift angle of 1/50 according to the code for seismic design of buildings(GB 50011—2010). The hysteresis loops are plump and symmetrical. A 10 mm out-of-plane deformation of the frame has little effect on its in-plane seismic performance.The elastic horizontal stiffness, yield shear force and the maximum shear force of the frames are only reduced by within 5% due to the influence of the out-of-plane deformation of the frame.The out-of-plane deformation of frame also has little effect on the axial deformation of the BRB in the frame.The perforated steel-plate assembled BRB in the steel frames and the individual perforated steel-plate assembled BRB member also have good hysteretic energy dissipation performance. It yields and contributes to energy dissipation at about 1/720 drift angle prior to inelastic deformation of the main frame. Its hysteresis loops are full and its ductility is satisfactory. Its cumulative plastic deformation capacity coefficient is greater than 600, which meets well with the US specification ANSI/AISC 341-10 requirement of 200.
引文
[1] 周云. 防屈曲耗能支撑结构设计与应用[M]. 北京:中国建筑工业出版社,2007:12-15.(ZHOU Yun.Structural design and application of buckling-restrained brace[M].Beijing: China Architecture & Building Press,2007: 12-15.(in Chinese))
    [2] 周云,唐荣,钟根全,等. 防屈曲耗能支撑研究与应用的新进展[J]. 防灾减灾工程学报,2012,32(4):393- 407.(ZHOU Yun,TANG Rong,ZHONG Genquan,et al.State of the art and state of the practice of buckling-restrained brace[J].Journal of Disaster Prevention and Mitigation Engineering,2012,32 (4): 393- 407.(in Chinese))
    [3] 赵俊贤,吴斌,欧进萍. 新型全钢防屈曲支撑的拟静力滞回性能试验[J]. 土木工程学报,2011,44(4):60-70.(ZHAO Junxian, WU Bin, OU Jinping. Uniaxial quasi-static cyclic tests on the hysteretic behavior ofa novel type of all-steel buckling-restrained brace[J]. China Civil Engineering Journal, 2011,44(4): 60-70.(in Chinese))
    [4] 赵俊贤. 全钢防屈曲支撑的抗震性能及稳定性设计方法[D]. 哈尔滨:哈尔滨工业大学,2012.(ZHAO Junxian. Seismic behavior and stability design methods of all-steel buckling-restrained braces[D]. Harbi: Harbin Institute of Technology, 2012.(in Chinese))
    [5] 高向宇,张慧,杜海燕,等. 组合热轧角钢防屈曲支撑构造及抗震试验[J]. 北京工业大学学报, 2008,34(5): 498-503. (GAO Xiangyu, ZHANG Hui, DU Haiyan, et al. Experiment on conformation and seismic performance of buckling-restrained brace made of composed hot-rolled angle steel[J]. Journal of Beijing University of Technology, 2008,34(5): 498-503.(in Chinese))
    [6] 高向宇,张慧,杜海燕,等. 防屈曲支撑恢复力的特点及计算模型研究[J]. 工程力学,2011,28(6):19-28.(GAO Xiangyu, ZHANG Hui, DU Haiyan, et al. Study on characterization and modeling of buckling-restrained brace[J]. Engineering Mechanics, 2011, 28(6): 19-28.(in Chinese))
    [7] 郭彦林,王小安,姜子钦. 两端刚接防屈曲支撑的受力性能及设计方法[J]. 建筑结构学报,2013,34(7):107-118.(GUO Yanlin,WANG Xiaoan,JIANG Ziqin. Behavior and design method of fixed-fixed buckling-restrained braces[J]. Journal of Building Structures, 2013, 34(7):107-118.(in Chinese))
    [8] GUO Yanlin, ZHU Jingshen, ZHOU Peng, et al. A new shuttle-shaped buckling-restrained brace: theoretical study on buckling behavior and load resistance[J]. Engineering Structures, 2017, 147(6): 223-241.
    [9] GUO Yanlin, ZHANG Bohao, ZHU Boli, et al. Theoretical and experimental studies of battened buckling-restrained braces[J]. Engineering Structures, 2017, 136(1): 312-328.
    [10] 贾明明,孙霖,郭兰慧,等. 防屈曲支撑非屈服段平面外屈曲对组合框架支撑结构性能的影响[J]. 建筑结构学报, 2013,34(增刊1): 383-388. (JIA Mingming, SUN Lin, GUO Lanhui, et al. Influences of out-of-plane buckling of non-yielding segments of BRBs on braced composite frame structure[J]. Journal of Building Structures, 2013, 34(Suppl.1):383-388.(in Chinese))
    [11] TSAI K C, HSIAO P C. Pseudo-dynamic test of a full-scale CFT/BRB frame & mdash: part Ⅱ: seismic performance of buckling-restrained braces and connections[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(7): 1099-1115.
    [12] 周云,钱洪涛,褚洪民,等. 新型防屈曲耗能支撑设计原理与性能研究[J]. 土木工程学报,2009,42(4):64-71.(ZHOU Yun, QIAN Hongtao, CHU Hongmin, et al. A study on the design principle and performance of a new type of buckling-restrained brace[J]. China Civil Engineering Journal, 2009, 42(4):64-71.(in Chinese))
    [13] 周云,尹绕章,张文鑫,等. 钢板装配式屈曲约束支撑性能试验研究[J]. 建筑结构学报,2014,35(8):37- 43.(ZHOU Yun, YIN Raozhang, ZHANG Wenxin, et al.Experimental study on hysteretic performance of steel-plate assembled buckling-restrained brace[J]. Journal of Building Structures, 2014,35(8):37- 43. (in Chinese))
    [14] 周云,龚晨,陈清祥,等. 开孔钢板装配式屈曲约束支撑减震性能试验研究[J]. 建筑结构学报,2016,37(8):101-107.(ZHOU Yun, GONG Chen, CHEN Qingxiang, et al. Experimental study on sismic performance of perforated steel-plate assembled buckling-restrained brace[J]. Journal of Building Structures, 2016, 37(8): 101-107. (in Chinese))
    [15] 张东彬,潘鹏,王萌资,等. 开长孔式叠层钢管屈曲约束支撑试验研究[J]. 土木工程学报,2016,49(12):9-15.(ZHANG Dongbin, PAN Peng, WANG Mengzi, et al. Experimental study on performance of a buckling-restrained brace consisting of three steel tubes with slotted holes in the middle tube[J]. China Civil Engineering Journal,2016,49(12):9-15.(in Chinese))
    [16] PIEDRAFITA D, CAHIS X, SIMONET E, et al. A new perforated core buckling restrained brace[J]. Engineering Structures, 2015, 85: 118-126.
    [17] WHITMORE R E. Experimental investigation of stresses in gusset plate: Engineering Experiment Station Bulletin No.16[R]. Tennessee, Knoxville: University of Tennessee, 1952.
    [18] THORNTON W A. Bracing connections for heavy constructions[J]. Engineering Journal, 1984, 21(3), 139-148.
    [19] MUIR L S. Designing compact gussets with the uniform force method[J]. Engineering Journal, 2009, 46(3):13-19.
    [20] CHOU C C, LIU J H. Frame and brace action forces on steel corner gusset plate connections in buckling-restrained braced frames[J]. Earthquake Spectra, 2012, 28(2):531-551.
    [21] 周云,钟根全,陈清祥,等. 不同构造钢板装配式屈曲约束支撑性能试验研究[J]. 土木工程学报,2017,50(12):9-17.(ZHOU Yun, ZHONG Genquan, CHEN Qingxiang, et al. Experimental study on hysteretic performance of steel-plate assembled buckling-restrained braces of different constructional details[J]. China Civil Engineering Journal, 2017, 50 (12): 9-17.(in Chinese))
    [22] American Instituteof Steel Construction. Seismic provisions for structural steel building: ANSI /AISC 341-10[S]. Chicago, Illinois: American Institute of Steel Construction, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700