30 keV H~+在聚碳酸酯微孔膜中动态输运过程的实验和理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental and theoritical research on the dynamical transmission of 30 keV H~+ ions through polycarbonate nanocapillaries
  • 作者:牛书通 ; 潘鹏 ; 朱炳辉 ; 宋涵宇 ; 金屹磊 ; 禹楼飞 ; 韩承志 ; 邵剑雄 ; 陈熙萌
  • 英文作者:Niu Shu-Tong;Pan Peng;Zhu Bing-Hui;Song Han-Yu;Jin Yi-Lei;Yu Lou-Fei;Han Cheng-Zhi;Shao Jian-Xiong;Chen Xi-Meng;School of Nuclear Science and Technology, Lanzhou University;
  • 关键词:输运特性 ; 动态演化 ; 理论模拟
  • 英文关键词:transmission feature;;dynamical evolution;;theoretical simulation
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:兰州大学核科学与技术学院;
  • 出版日期:2018-09-30 07:08
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:11675067)资助的课题~~
  • 语种:中文;
  • 页:WLXB201820023
  • 页数:11
  • CN:20
  • ISSN:11-1958/O4
  • 分类号:336-346
摘要
测量了30 keV的H~+入射倾斜角度为-1°和-2°的聚碳酸酯微孔膜后,出射粒子二维分布图、角度分布、相对穿透率以及出射H~+电荷态纯度随沉积电荷的演化.实验中30 keV的H~+在微孔膜中输运特性与之前其他能区离子在微孔膜中输运特性有显著不同,实验中直接观测到出射粒子导向部分和散射部分的动态演化过程,出射的H~+由沿微孔孔轴方向的导向H~+和沿入射束流方向的散射H~+两部分组成,随着微孔内电荷斑的沉积,出射的导向H+的占比不断减小,出射散射H+占比不断增加;出射H~0占总出射粒子的比例不断减小,其中心方向逐步向入射束流方向偏转.微孔膜处于不同倾斜角度时,微孔内沉积电荷斑的位置和电场强度是不同的.同时模拟计算了入射H~+在微孔内部的运动轨迹、微孔内部电荷斑电势和场强分布,实验结果和理论结果得到了很好的验证.对出射离子导向部分和散射部分的动态演化过程的观测和理论解释,使得对中能区离子在微孔膜中输运机制有更好的认识.
        The ions with different incident energies transmitting through insulating nanocapillaries are studied in various configurations. For the low energy ions transmitting through nanocapillaries, Stolterfoht et al. [2002 Rev. Lett.88 133201] have observed the guiding effect. Subsequent studies revealed that the self-organizing charge patches on the capillary wall inhibit charge exchange and the ions are transmitted along the capillary axis direction. The high energies of ions transmitting through nanocapillaries are measured, the main transmission mechanism is multiple random inelastic collisions below the surface, and the charge patches will not affect the transmitted ions trajectories.The transmission features of the intermediate energy ions are different from those of the low and high energy ions.The ion beams with intermediate energies have many applications, so it is necessary to understand the transmission features of the intermediate energy ions though nanocapillaries. Recent studies have focused on the transmission of the intermediate energies ions through the nanocapillaries.In the present work, we investigate thie transmission features, such as the two-dimensional transmitted angular distributions, the charge states and position distributions, and the evolution of the relative transmission rate and the charge purity of 30 keV H~+ transmitting through nanocapillaries in a polycarbonate membrane at the angles of-1°and-2°. The experimental data clearly show that the transmitted H~+ ions consist of the transmitted scattering H~+ ions,which are located around the direction of the incident beam, and the transmitted guiding H~+ ions, which are located around the direction of the capillary axis. With the charges depositing in the capillary, the proportion of the transmitted scattering H+ ions increases and the proportion of the transmitted guiding H+ ion decreases, which directly demonstrates the dynamical evolution of the scattering ions and the guiding ions.To understand the competition between the transmitted scattering ions and the transmitted guiding ions and the physical picture of the intermediate energy ions transmitting through the insulating nanocapillaries, the trajectories of the H+ ions in the capillary and the potential distribution and electric field intensity distribution in the capillary are numerically simulated. The results show that the potential distributions and electric field intensitiesy are different for H+ ions transmitting through nanocapillaries at various tilt angles, and the simulation results are in good agreement with the experimental data. The experimental and simulation results give us a further insight into the mechanisms of guiding and scattering in intermediate energy ions transmitting through nanocapillaries.
引文
[1] Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T,Pokhil G P 2008 Appl. Phys. Lett. 92 023509
    [2] Martin C R 1994 Science 266 1961
    [3] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T,Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006Appl. Phys. Lett. 89 163502
    [4] Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902
    [5] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88133201
    [6] Schiessl K, T?kési K, Solleder B, Lemell C, Burgd?rfer J 2009 Phys. Rev. Lett. 102 163201
    [7] Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M2012 Phys. Rev. A 85 064901
    [8] Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y2011 J. Appl. Phys. 110 044913
    [9] Stolterfoht N, Hellhammer R, Bundesmann J, Fink D,Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y2007 Phys. Rev. A 76 022712
    [10] Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev.A 79 022901
    [11] Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101223202
    [12] Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82052901
    [13] Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T,Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth.B 267 674
    [14] Juhász Z, Sulik B, Rácz R, Biri S, J Bereczky R, T?kési K, K?vérá, Pálinkás J, Stolterfoht N 2010 Phys. Rev.A 82 062903
    [15] Lemell C, Burgd?rfer J, Aumayr F 2013 Prog. Surf. Sci.88 237
    [16] Simon M J, Zhou C L, D?beli M, Cassimi A, Monnet I,Méry A, Grygiel C, Guillous S, Madi T, Benyagoub A,Lebius H, Müller A M, Shiromaru H, Synal H A 2014Nucl. Instrum. Meth. B 330 11
    [17] Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401(in Chinese)[周旺,牛书通,闫学文,白雄飞,韩承志,张鹛枭,周利华,杨爱香,潘鹏,邵剑雄,陈熙萌2016物理学报65 103401]
    [18] Zhu B H, Yang A X, Niu S T, Chen X M, Zhou W, Shao J X 2018 Acta Phys. Sin. 67 013401(in Chinese)[朱炳辉,杨爱香,牛书通,陈熙萌,周旺,邵剑雄2018物理学报67 013401]
    [19] Mo D 2009 Ph. D. Dissertation(Lanzhou:Institute of Moden Physics, Chinese Academy of Sciences)(in Chinese)[莫丹2009博士学位论文(兰州:中国科学院近代物理研究所)]
    [20] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88133201
    [21] Schiessl K, Palfinger W, Lemell C, Burgd?rfer J 2005Nucl. Instrum. Meth. B 232 228
    [22] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys.Rev. A 83 062901
    [23] Yang F J 2008 Atom Physics(Beijing:Higher Education Press)p95(in Chinese)[杨福家2008原子物理学(北京:高等教育出版社)第95页]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700