基于时间分辨方法的LicT蛋白荧光动力学特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy
  • 作者:常孟方 ; 李磊 ; 曹潇丹 ; 贾梦辉 ; 周加胜 ; 陈缙泉 ; 徐建华
  • 英文作者:CHANG Meng-Fang;LI Lei;CAO Xiao-Dan;JIA Meng-Hui;ZHOU Jia-Sheng;CHEN Jin-Quan;XU Jian-Hua;State Key Laboratory of Precision Spectroscopy, East China Normal University;Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences;
  • 关键词:时间相关单光子计数 ; 色氨酸 ; 衰减相关光谱 ; 时间分辨发射光谱 ; 各向异性
  • 英文关键词:Time-correlated single-photon counting;;Tryptophan;;Decay-associated spectra;;Timeresolved emission spectra;;Anisotropy
  • 中文刊名:WLHX
  • 英文刊名:Acta Physico-Chimica Sinica
  • 机构:华东师范大学精密光谱科学与技术国家重点实验室;中国科学院上海光学精密机械研究所;
  • 出版日期:2017-05-15
  • 出版单位:物理化学学报
  • 年:2017
  • 期:v.33
  • 语种:中文;
  • 页:WLHX201705029
  • 页数:6
  • CN:05
  • ISSN:11-1892/O6
  • 分类号:222-227
摘要
使用时间分辨荧光方法,结合紫外吸收光谱和稳态荧光光谱技术,测量了LicT蛋白中色氨酸残基的荧光动力学特性,进而对LicT蛋白质激活前后的局部微环境和结构变化进行了研究。LicT蛋白质的激活态使得有关糖类利用的基因转录过程继续进行,促进机体新陈代谢。通过色氨酸残基的荧光发射和寿命的差异判断出激活型蛋白AC 141和野生型蛋白Q 22不同的结构性质和微环境差异。在此基础上,通过衰减相关光谱(DAS)和时间分辨发射光谱(TRES)阐释了两种蛋白色氨酸残基和溶剂的相互作用,说明了激活型AC 141的比野生型Q 22的结构更加紧密。此外,TRES还说明了蛋白中的色氨酸残基存在连续光谱弛豫过程。各向异性结果则对残基和整个蛋白的构象运动进行了阐述,说明了色氨酸残基在蛋白质体系内有独立的局部运动,且在激活型蛋白中该运动更加强烈。
        In this paper, the fluorescence dynamics of tryptophan residues in Lic T protein is investigated by time-resolved fluorescence method combined with UV absorption and steady-state fluorescence spectroscopy.The local microenvironment and structural changes of Lic T protein before and after activation are studied. The activated Lic T protein AC 141 prevents the antitermination of gene transcription involved in carbohydrate utilization to accelerate the body′s metabolism. The structural properties and microenvironment of activated protein AC 141 and wild-type protein Q 22 were determined by different fluorescence emissions and lifetimes of tryptophan residues. The interaction between tryptophan residues and solvent is elucidated by decay associated spectroscopy(DAS) and time-resolved emission spectra(TRES), indicating that upon activation,the structure of AC 141 is more compact than that of wild-type Q 22. In addition, TRES also showed that tryptophan residues in the protein had a continuous spectral relaxation process. Anisotropy results illustrated the conformational motions of residues and whole proteins, suggesting that tryptophan residues had independent local motions in the protein system, and that the motions were more intense in the activated protein.
引文
(1)Frauenfelder,H.;Sligar,S.G.;Wolynes,P.G.Science 1991,254(5038),1598.doi:10.1126/science.1749933
    (2)Xu,J.;Toptygin,D.;Graver,K.J.;Albertini,R.A.;Savtchenko,R.S.;Meadow,N.D.;Roseman,S.;Callis,P.R.;Brand,L.;Knutson,J.R.J.Am.Chem.Soc.2006,128(4),1214.doi:10.1021/ja055746h
    (3)Schimmel,P.;Cantor,C.Biophysical Chemistry:Part II;Techniques for the Study of Biological Structure and Function;WH Freeman:New York,1980;pp 14-178.
    (4)Lu,W.;Kim,J.;Qiu,W.;Zhong,D.Chem.Phys.Lett.2004,388(1-3),120.doi:10.1016/j.cplett.2004.03.012
    (5)Callis,P.R.Method Enzymol.1996,278,113.doi:10.1016/S0076-6879(97)78009-1
    (6)Longworth,J.W.Intrinsic Fluorescence of Proteins.In TimeResolved Fluorescence Spectroscopy in Biochemistry and Biology;Cundall,R.B.,Dale,R.E.Eds.;Springer US:Boston,MA,1983;pp 651-725.
    (7)Knutson,J.R.;Walbridge,D.G.;Brand,L.Biochemistry 1982,21(19),4671.doi:10.1021/bi00262a024
    (8)Mc Mahon,L.P.;Yu,H.T.;Vela,M.A.;Morales,G.A.;Shui,L.;Fronczek,F.R.;Mc Laughlin,M.L.;Barkley,M.D.J.Phys.Chem.B 1997,101(16),3269.doi:10.1021/jp963273i
    (9)Ross,J.B.A.;Wyssbrod,H.R.;Porter,R.A.;Schwartz,G.P.;Michaels,C.A.;Laws,W.R.Biochemistry 1992,31(6),1585.doi:10.1021/bi00121a002
    (10)Szabo,A.G.;Rayner,D.M.J.Am.Chem.Soc.1980,102(2),554563.doi:10.1021/ja00522a020
    (11)Chen,Y.;Barkley,M.D.Biochemistry 1998,37(28),9976.doi:10.1021/bi980274n
    (12)Lakowicz,J.R.Principles of Fluorescence Spectroscopy;Springer Science&Business Media:New York,2006;pp 102-605.
    (13)Vincent,M.;Deveer,A.M.;Haas,G.H.;Verheij,H.M.;Gallay,J.Eur.J.Biochem.1993,215(3),531.doi:10.1111/j.1432-1033.1993.tb18062.x
    (14)Ross,J.B.A.;Schmidt,C.J.;Brand,L.Biochemistry 1981,20(15),4369.doi:10.1021/bi00518a021
    (15)Deutscher,J.;Francke,C.;Postma,P.W.Microbiol.Mol.Biol.R.2006,70(4),939.doi:10.1128/MMBR.00024-06
    (16)Stülke,J.;Arnaud,M.;Rapoport,G.;Martin-Verstraete,I.Mol.Microbiol.1998,28(5),865.doi:10.1046/j.1365-2958.1998.00839.x
    (17)van Tilbeurgh,H.;Le Coq,D.;Declerck,N.EMBO J.2001,20(14),3789.doi:10.1093/emboj/20.14.3789
    (18)Declerck,N.;Dutartre,H.;Receveur,V.;Dubois,V.;Royer,C.;Aymerich,S.;van Tilbeurgh,H.J.Mol.Biol.2001,314,671.doi:10.1006/jmbi.2001.5185
    (19)Declerck,N.;Vincent,F.;Hoh,F.;Aymerich,S.;van Tilbeurgh,H.J.Mol.Biol.1999,294(2),389.doi:10.1006/jmbi.1999.3256
    (20)Gooch,J.W.Beer-Bouguer Law(Beer-Lambert Law).In Encyclopedic Dictionary of Polymers,Gooch,J.W.Ed.;Springer New York:New York,2011;p 72.
    (21)Zhang,L.;Kao,Y.T.;Qiu,W.;Wang,L.;Zhong,D.J.Phys.Chem.B 2006,110(37),18097.doi:10.1021/jp063025e
    (22)Callis,P.R.;Burgess,B.K.J.Phys.Chem.B 1997,101(46),9429.doi:10.1021/jp972436f
    (23)Pierce,D.W.;Boxer,S.G.Biophys.J.1995,68(4),1583.doi:10.1016/S0006-3495(95)80331-0
    (24)Qiu,W.;Li,T.;Zhang,L.;Yang,Y.;Kao,Y.T.;Wang,L.;Zhong,D.Chem.Phys.2008,350(1-3),154.doi:10.1016/j.chemphys.2008.01.061
    (25)Gryczynski,I.;Wiczk,W.;Johnson,M.L.;Lakowicz,J.R.Biophys.Chem.1988,32(2),173.doi:10.1016/0301-4622(88)87005-4
    (26)Chen,R.F.;Knutson,J.R.;Ziffer,H.;Porter,D.Biochemistry1991,30(21),5184.doi:10.1021/bi00235a011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700