基于上转换纳米粒子与金纳米粒子构建荧光共振能量转移体系检测双酚A方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Highly Sensitive Detection of Bisphenol A Based on FRET from Up-conversion Nanoparticles to Gold Nanoparticles
  • 作者:许宙 ; 鲁士珍 ; 陈茂龙 ; 朱颖越 ; 丁利 ; 程云辉
  • 英文作者:XU Zhou;LU Shi-zhen;CHEN Mao-long;ZHU Ying-yue;DING Li;CHENG Yun-hui;School of Chemistry and Biological Engineering,Changsha University of Science & Technology;School of Biotechnology and Food Engineering,Changshu Institute of Technology;
  • 关键词:荧光共振能量转移 ; 上转换荧光纳米材料 ; 金纳米颗粒 ; 双酚A
  • 英文关键词:fluorescence resonance energy transfer;;Up-conversion nanoparticles;;gold nanoparticles;;bisphenol A
  • 中文刊名:SPJX
  • 英文刊名:Food & Machinery
  • 机构:长沙理工大学化学与生物工程学院;常熟理工学院生物与食品工程学院;
  • 出版日期:2018-09-28
  • 出版单位:食品与机械
  • 年:2018
  • 期:v.34;No.203
  • 基金:国家自然科学基金(编号:31401566);; 国家重点研发计划(编号:2016YFF0203701);; 粮食深加工与品质控制湖南省2011协同创新项目;; 常熟市科技发展计划(社会发展类)项目(编号:CS201605);; 苏州市科技计划项目(编号:SNG201617)
  • 语种:中文;
  • 页:SPJX201809020
  • 页数:5
  • CN:09
  • ISSN:43-1183/TS
  • 分类号:89-93
摘要
制备了粒径为13nm的金纳米粒子,在其表面修饰双酚A(BPA)适配体作为能量受体探针;并利用聚丙烯酸(PAA)包覆油溶性的上转换荧光纳米材料(UCNPs)制备水溶性的UCNPs,在其表面修饰适配体互补链形成功能化UCNPs作为能量供体,构建了基于FRET原理的BPA生物传感检测平台。结果表明:该检测体系在1×10~(-9)~1×10~(-3) mol/L时具有良好的线性关系(R~2=0.992 3),检出限低至1×10~(-10) mol/L。
        The 13 nm gold nanoparticles were synthesized and were modified with Bisphenol A(BPA)aptamer.The oil-solubility Upconversion nanoparticles(UCNPs)were modified with polyacrylic acid(PAA)to form water-solubility UCNPs.Then water-solubility UCNPs were coated with the complementary DNA strand.Based these nanoparticles,a FRET aptasensor for BPA was successfully fabricated by using Up-conversion nanoparticles as energy donor and gold nanoparticles as energy acceptor.The results show that the detection system has a good linear relationship at 1×10~(-9)~1×10~(-3) mol/L(R~2=0.992 3),and the detection limit is as low as 1×10~(-10) mol/L.The method is proved to be of good practicability through the experiment of adding the standard of water and milk samples.
引文
[1]FENG Jing-jing,XU Li-guang,CUI Gang,et al.Building SERS-active heteroassemblies for ultrasensitive Bisphenol A detection[J].Biosensors&Bioelectronics,2016,81:138-142.
    [2]KASHEFI-KHEYRABADI L,KIM J,GWAK H,et al.A microfluidic electrochemical aptasensor for enrichment and detection of bisphenol A[J].Biosensors and Bioelectronics,2018,7(6):346-353.
    [3]YUN Wen,WU Hong,CHEN Lin,et al.Dual enzyme-free amplification strategy for ultra-sensitive fluorescent detection of bisphenol A in water[J].Analytica Chimica Acta,2018,1 020:104-109.
    [4]BEN N M,GHICA M E,DRIDI C,et al.A novel amperometric enzyme inhibition biosensor based on xanthine oxidase immobilised onto glassy carbon electrodes for bisphenol A determination[J].Talanta,2018,184:388-393.
    [5]JO M,AHN J Y,LEE J,et al.Development of single-stranded DNA aptamers forspecific bisphenol A detection[J].Oligonucleotides,2011,21(2):85-91.
    [6]CHEN Yi,FANG Jian-zhang,REN Lu,et al.Urinary bisphenol analogues and triclosan in children from south China and implications for human exposure[J].Environmental Pollution,2018,238:299.
    [7]HUANG Ying,LI Xiao-feng,ZHENG Si-ning.A novel and label-free immunosensor for bisphenol A using rutin as the redox probe[J].Talanta,2016,160:241-246.
    [8]ALONSO-MAGDALENA P,QUESADA I,NADAL A.Endocrine disruptors in the etiology of type 2diabetes mellitus[J].Nature Reviews Endocrinology,2011,7(6):346-353.
    [9]ROCHESTER J R.Bisphenol A and human health:a review of the literature[J].Reproductive Toxicology,2013,42:132-155.
    [10]徐耿,苏普玉.童年期双酚A暴露对女童青春期发育提前的影响[J].中国儿童保健杂志,2016,24(7):719-722.
    [11]HAERI S A.Bio-sorption based dispersive liquid-liquid microextraction for the highly efficient enrichment of trace-level bisphenol A from water samples prior to its determination by HPLC[J].Journal of Chromatography B,2016,1 028:186-191.
    [12]LI Xing-nan,FRANKE A A.Improvement of bisphenol A quantitation from urine by LCMS[J]. Analytical&Bioanalytical Chemistry,2015,407(13):3 869-3 874.
    [13]ROS O,VALLEJO A,BLANCOZUBIAGUIRRE L,et al.Microextraction with polyethersulfone for bisphenol-A,alkylphenols and hormones determination in water samples by means of gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry analysis[J].Talanta,2015,134:247-255.
    [14]ZHU Ying-yue,CAI Yi-lin,XU Li-guang,et al.Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A[J].Acs Appl Mater Interfaces,2015,7(14):7 492-7 496.
    [15]WU Ya-ting,LIU Yan-jie,GAO Xia,et al.Monitoring bisphenol A and its biodegradation in water using a fluorescent molecularly imprinted chemosensor[J].Chemosphere,2015,119:515-523.
    [16]MAIOLINI E,FERRI E,PITASI A L,et al.Bisphenol A determination in baby bottles by chemiluminescence enzymelinked immunosorbent assay,lateral flow immunoassay and liquid chromatography tandem mass spectrometry[J].Analyst,2013,139(1):318-324.
    [17]KIM A,LI Chun-ri,JIN Chun-feng,et al.A sensitive and reliable quantification method for Bisphenol A based on modified competitive ELISA method[J].Chemosphere,2007,68(7):1 204-1 209.
    [18]VARMIRA K,SAED-MOCHESHI M,JALALVAND A R.Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA:A comprehensive review[J].Sensing and Bio-Sensing Research,2017,15(C):17-33.
    [19]QIU Lu,LIU Qi,ZENG Xiao-liang,et al.Sensitive detection of bisphenol A by coupling solid phase microextraction based on monolayer graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman spectroscopy[J].Talanta,2018,187:13-18.
    [20]修景锐,胡思怡,李金华,等.基于近红外量子点的荧光共振能量转移生物探针构建及应用[J].中国光学,2018,11(1):74-82.
    [21]DAI Shao-liang,WU Shi-jia,DUAN Nuo,et al.An ultrasensitive aptasensor for Ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores[J].Biosensors&Bioelectronics,2017,91:538.
    [22]ADRIANO Ambrosi.Double-codified gold nanolabels for enhanced immunoanalysis[J].Analytical Chemistry,2007,79(14):5 232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700