双氮协同钴掺杂锐钛矿相二氧化钛电子结构的第一性原理研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tailoring the electronic structure ofanatase TiO_2 by double N with Co codoping from density function theory calculations
  • 作者:李宗宝 ; 王霞 ; 邢晓波
  • 英文作者:LI Zong-Bao;WAND Xia;XING Xiao-Bo;School of Material and Chemical Engineering, Tongren University;South China Academy of Advanced Optoelectronics, South China Normal University;
  • 关键词:TiO_2 ; 第一性原理 ; 双N和Co共掺杂 ; 电子结构 ; 吸收光谱
  • 英文关键词:TiO_2;;First-principle;;2N and Co co-doping;;Electronic structure;;Absorption spectra
  • 中文刊名:YZYF
  • 英文刊名:Journal of Atomic and Molecular Physics
  • 机构:铜仁学院材料与化学工程学院;华南师范大学华南先进光电子研究院;
  • 出版日期:2018-12-10 09:47
  • 出版单位:原子与分子物理学报
  • 年:2019
  • 期:v.36
  • 基金:贵州省自然科学基金([2016]1150,[2015]67);; 化学工程与技术贵州省重点学科基金(黔学位合字ZDXK[2017]8号)
  • 语种:英文;
  • 页:YZYF201902022
  • 页数:7
  • CN:02
  • ISSN:51-1199/O4
  • 分类号:139-145
摘要
采用基于密度泛函理论的第一性原理计算了双氮原子协同钴原子共掺杂TiO_2的几何结构和电子结构.计算结果发现:双氮原子掺杂引起的双空穴位与钴原子形成了较强的耦合作用,并引起晶格结构发生明显变化.共掺杂的协同效应引起TiO_2禁带宽度变窄,在价带顶和导带底出现大量杂质能级,从而引起吸收带边发生明显红移.该掺杂方式对调制TiO_2禁带宽度有明显的效果,有望指导后续的实验合成.
        Using density function theory calculations, a double-mediated coupling of dopant by two N and one Co atoms is confirmed in TiO_2. The doped geometries and electronic structures are calculated. Substituting the two neighboring oxygen atoms by N atoms and the Ti by Co atom, the results show that net two holes couple strongly with the Co atom and a significant lattice relaxation occurs. The codoping synergistic effect results in an obvious band gap narrowing with some impurity bands laying above valance band and some below conduction band, which leads the absorption edge shift to visible region substantially. We expect this generic band-structure tailoring scheme will be applied to other photocatalytic systems and beyond.
引文
[1] Linsebigler A L,Lu G Q,Yates J T.Photocatalysis on TiO2 surfaces:principles,mechanisms,and selected results [J].Chem.Rev.,1995,95:735.
    [2] Khan S U M,Al-Shahry M,Ingler Jr WB.Efficient photochemical water splitting by a chemically modified n-TiO2[J].Science,297:2243.
    [3] Bak T,Nowotny J,Rekas M,et al.Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects [J].Int.J.Hydrogen Energy,2002,27:991.
    [4] Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,238:37.
    [5] Gai Y,Li J,Li S S,et al.Design of narrow-gap:a passivated codoping approach for enhanced photoelectrochemical activity [J].Phys.Rev.Lett.,2009,102:036402.
    [6] Pan,J W,Li C,Zhao Y F,et al.Electronic properties of TiO2,doped with Sc,Y,La,Zr,Hf,V,Nb and Ta [J].Chem.Phys.Lett.,2015,628:43.
    [7] Bendova M,Gispert G F,Hassel A W,et al.Solar water splitting on porous-alumina-assisted TiO2-doped WOx,nanorod photoanodes paradoxes and challenges [J].Nano Energy,2017,33:72.
    [8] Cavalcante R P,Dantas R F,Bayarri B.Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2,and TiO2,doped with 5% B primary active species and intermediates[J].Appl.Catal.B:Enviro.,2016,194:111.
    [9] Tian M,Wang H,Sun D,et al.Visible light driven nanocrystal anatase TiO2,doped by Ce from sol–gel method and its photoelectrochemical water splitting properties [J].Int.J.Hydrogen Ener.,2014,39:13448.
    [10] Li Z B,Wang X,Jia L C.Enhanced visible-light photocatalytic activity of anatase TiO2 through C,N and F codoping [J].Can.J.Phys.,2014,92:71
    [11] Li X Y,Li Z B,Yang X F,et al.First-principles study of initial oxygen reduction reaction on stoichiometric and reduced CeO2(111) surfaces as cathode catalyst for lithium-oxygen batteries [J].J.Mater.Chem.A,2017,5:3320
    [12] Nishijima K,Ohtani B,Yan T,et al.Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO2 photocatalysts [J].Chem.Phys.,2007,339:64.
    [13] Li D X,Li R Q,Tan X M,et al.First-principles calculations for the magnetisms and optical properties of C-doped rutile TiO2 [J].J.At.Mol.Phys.(原子与分子物理学报),2017,34:1155 (in Chinese)
    [14] Zhang D X.First-principles study on La-N co-doped anatase TiO2[J].J.At.Mol.Phys.( 原子与分子物理学报),2016,33:1113 (in Chinese)
    [15] Gai Y,Li J B,Li S S,et al.Design of narrow-gap a passivated codoping approach for enhanced photoelectrochemical activity [J].Phys.Rev.Lett.,2009,102:036402.
    [16] Zhu W,Qiu X F,Lan C V,et al.Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity [J].Phys.Rev.Lett.,2009,103:226401.
    [17] Zhang L,Pan C,Fang P,et al.Mo+C Codoped TiO2 using thermal oxidation for enhancing photocatalytic activity [J].ACS Appl.Mater.Int.,2010,2:1173
    [18] Yin W J,Tang H W,Wei S H,et al.Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting the case of TiO2 [J].Phys.Rev.B,2010,82:045106.
    [19] Wu K R,Hung C H.Characterization of N,C-codoped TiO2 films prepared by reactive DC magnetron sputtering [J].Appl.Surf.Sci.,2009,256:1595.
    [20] Wang P,Liu Z R,Lin F,et al.Optimizing photoelectrochemical properties of by chemical codoping [J].Phys.Rev.B,2010,82:193103.
    [21] Tsetseris L.Configurations,electronic properties,and diffusion of carbon and nitrogen dopants in rutile TiO2:A density functional theory study [J].Phys.Rev.B,2011,84:165201
    [22] Xia Q C,Wellia D V,Yan S,et al.Enhanced photocatalytic activity of C–N-codoped TiO2 films prepared via an organic-free approach [J].J.Hazardous Mater.,2011,188:172.
    [23] Kang X,Han Y,Song X,et al.A facile photoassisted route to synthesis N,F-codoped oxygen-deficient TiO2 with enhanced photocatalytic performance under visible light irradiation [J].Appl.Surf.Sci.,2018,434:725.
    [24] Biswas A,Chakraborty A,Jana N.R.Nitrogen and fluorine codoped,colloidal TiO2 nanoparticle:tunable doping,large red shifted band edge,visible light induced photocatalysis and cell death[J].ACS Appl.Mater.Int.,2018,10:1976
    [25] Guo Q,Zhang Z,Ma X,et al.Preparation of N,F-codoped TiO2 nanoparticles by three different methods and comparison of visible-light photocatalytic performances[J].Sep.Purif.Technol.,2017,175:305.
    [26] Peng Y P,Chen H,Huang C P.The synergistic effect of photoelectrochemical (PEC) reactions exemplified by concurrent perfluorooctanoic acid (PDOA) degradation and hydrogen generation over carbon and nitrogen codoped TiO2,nanotube arrays photoelectrode[J].Appl.Catal.B:Enviro.2017,209:437
    [27] Yin W J,Wei S H,Al-jassim M M,et al.Double-hole-mediated coupling of dopants and its impact on band gap engineering in TiO2 [J].Phys.Rev.Lett.,2011,106:066801.
    [28] Jia L C,Wu C C,Han S,et al.Theoretical study on the electronic and optical properties of (N,Fe)-codoped anatase TiO2 photocatalyst [J].J.Alloy.Comp.,2011,509:6067.
    [29] Hoseini S N,Pirzaman A K,Aroon M A,et al.Photocatalytic degradation of 2,4-dichlorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes[J].J.Water Process Eng.,2017,17:124
    [30] Yadav H M,Kim J S.Sol–gel synthesis of Co2+-doped TiO2 nanoparticles and their photocatalytic activity study[J].Sci.Adv.Mater.,2017,9:1114
    [31] Kresse G,Hafner J.Ab initio molecular dynamics for liquid metals [J].Phys.Rev.B,1993,47:558.
    [32] Kresse G,Furthmuller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].Phys.Rev.B,1996,54:11169.
    [33] Perdew J P,Ahevary C J,Vosko S H,et al.Atoms,molecules,solids,and surfaces Applications of the generalized gradient approximation for exchange and correlation [J].Phys.Rev.B,2004,46:6671.
    [34] Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations [J].Phys.Rev.B,1996,13:5188.
    [35] Dudarev S L,Botton G A,Savarsov S Y,Humphreys C J,Sutton A P.electron-energy-loss spectra and the structural stability of nickel oxide:an LSDA+ U study [J].Phys.Rev.B,1998,57:1505.
    [36] Yang K,Dai Y,Huang B,Feng Y P,Density-functional characterization of antiferromagnetism in oxygen-deficient anatase and rutile TiO2 [J].Phys.Rev.B,2010,81:033202.
    [37] Li Z B,Wang X,Jia L C,et al.Reduction of HCHO with OH- on Pt loading anatase TiO2 (001) surface:A DFT Calculation [J].Catal.Commun.,2017,92:23.
    [38] Dompablo M E A,Morales G A,Taravillo M.DFT+U calculations of crystal lattice,electronic structure,and phase stability under pressure of TiO2 polymorphs [J].J.Chem.Phys.,2011,135:054503.
    [39] Jia L C,Wu C C,Li Y Y,et al.Enhanced visible-light photocatalytic activity of anatase through N and S codoping [J].Appl.Phys.Lett.,2011,98:211903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700