硅胶-水吸附式冷风机组的设计及性能实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and experimental study on silica gel-water adsorption air cooler
  • 作者:王红斌 ; 彭佳杰 ; 孙海权 ; 潘权稳 ; 王如竹 ; 王海亮 ; 徐兆宏
  • 英文作者:WANG Hongbin;PENG Jiajie;SUN Haiquan;PAN Quanwen;WANG Ruzhu;WANG Hailiang;XU Zhaohong;Shandong Normal University Lishan College;Institute of Refrigeration and Cryogenics,Shanghai Jiao Tong University;
  • 关键词:吸附 ; 硅胶-水 ; 冷风机 ; 设计 ; 解吸
  • 英文关键词:adsorption;;silica gel-water;;air cooler;;design;;desorption
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:山东师范大学历山学院;上海交通大学制冷与低温工程研究所;
  • 出版日期:2019-03-15
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 语种:中文;
  • 页:HGSZ2019S1024
  • 页数:7
  • CN:S1
  • ISSN:11-1946/TQ
  • 分类号:192-198
摘要
吸附式冷风机组无须冷水回路和冷水泵,可满足小型化的应用需求。针对一种由2个吸附床,1个冷凝器和1个热管型的蒸发器的硅胶-水吸附式冷风机进行了实验研究,确定了机组的动态运行特性,探讨了热源温度、冷却水进口温度和冷风出口温度对系统性能的影响。实验结果表明,机组能够有效利用60~90℃范围内的低温热源,可提供0.84~2.29 kW的制冷量,系统的COP在0.26~0.43之间。
        The adsorption air cooler does not require the cooling water circuit and the cooling water pump, so it can meet the needs of miniaturized applications. In this paper, a silica gel-water adsorption air cooler was experimentally studied, which consists of two adsorbers, one condenser and one heat pipe type evaporator. The dynamic operating characteristics of the cooler were obtained. This paper discusses the influence of heat source temperature, cooling water inlet temperature and cold air outlet temperature on system performance. The experimental results show that the cooler can be effectively driven by low-grade heat source at 60—90℃. The cooling capacity of 0.84—2.29 kW and the corresponding COPs of 0.26—0.43 were achieved.
引文
[1] Pan Q W, Wang R Z. Study on operation strategy of a silica gelwater adsorption chiller in solar cooling application[J]. Solar Energy, 2018, 172:24-31.
    [2]孟晓伟,武卫东,朱成剑.用于吸附单元管的烧结沸石吸附剂的性能强化实验[J].制冷技术, 2014, 34(2):20-25.Meng X W, Wu W D, Zhu C J. Experiment on performance strengthening of sintered zeolite adsorbent for adsorption unit tube[J]. Chinese Journal of Refrigeration Technology, 2014, 34(2):20-25.
    [3] Lu Z S, Wang R Z. Performance improvement by mass-heat recovery of an innovative adsorption air-conditioner driven by 50-80℃hot water[J]. Applied Thermal Engineering, 2013, 55(1/2):113-120.
    [4] Wang D, Zhang J, Tian X, et al. Progress in silica gel-water adsorption refrigeration technology[J]. Renewable and Sustainable Energy Reviews, 2014, 30:85-104.
    [5] GBU-Model Type NAK-Adsorptions Chiller[DB/OL]. 2018.https://www. environmental-expert. com/products/gbu-modeltype-nak-adsorptions-chiller-500408.
    [6] Silica Gel Chillers eCoo[DB/OL]. 2018.http://fahrenheit cool/en/products/chillers/ecoo/.
    [7] Saha B B, Akisawa A, Kashiwagi T. Solar/waste heat driven twostage adsorption cooler:the prototype[J]. Renewable Energy,2001, 23(1):93-101.
    [8] Saha B B, Koyama S, Choon Ng K, et al. Study on a dual-mode,multi-stage, multi-bed regenerative adsorption chiller[J].Renewable Energy, 2006, 31(13):2076-2090.
    [9] Chang W S, Wang C C, Shieh C C. Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller[J]. Applied Thermal Engineering, 2009, 29(10):2100-5.
    [10] Magnetto D, de Boer R, Vasta S. TOPMACS:thermally operated mobile air conditioning systems[C]//Vehicle Thermal Management Systems Conference and Exhibition(VTMS10). Woodhead Publishing, 2011:635-647.
    [11] Wang D C, Wu J Y, Xia Z Z, et al. Study of a novel silica gel–water adsorption chiller(Ⅱ):Experimental study[J]. International Journal of Refrigeration, 2005, 28(7):1084-1091.
    [12] Chen C J, Wang R Z, Xia Z Z, et al. Study on a compact silica gelwater adsorption chiller without vacuum valves:design and experimental study[J]. Applied Energy, 2010, 87(8):2673-2681.
    [13] Lu Z S, Wang R Z, Xia Z Z, et al. Experimental investigation adsorption chillers using micro-porous silica gel–water and compound adsorbent-methanol[J]. Energy Conversion and Management, 2013, 65:430-437.
    [14] Pan Q W, Wang R Z, Wang L W, et al. Design and experimental study of a silica gel-water adsorption chiller with modular adsorbers[J]. International Journal of Refrigeration, 2016, 67:336-44.
    [15] Khalil A, El-Agouz E A, El-Samadony Y A F, et al. Experimental study of silica gel/water adsorption cooling system using a modified adsorption bed[J]. Science and Technology for the Built Environment, 2016, 22(1):41-49.
    [16] Ramy H M, Osama M, Mohamed L E, et al. Physical properties and adsorption kinetics of silica-gel/water for adsorption chillers[J]. Applied Thermal Engineering, 2018, 137:368-376.
    [17] Ramy H M, Osama M, Mohamed L E, et al. Revisiting the adsorption equilibrium equations of silica-gel/water for adsorption cooling applications[J]. International Journal of Refrigeration,2018, 86:40-47.
    [18] Sourav M, Kyaw T, Bidyut B S, et al. Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system[J]. Applied Energy,2017, 206:507-518.
    [19] Sapienza A, GullìG, Calabrese L, et al. An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers[J].Applied Energy, 2016, 179:929-938.
    [20] Sapienza A, Palomba V, GullìG, et al. A new management strategy based on the reallocation of ads-/desorption times:experimental operation of a full-scale 3 beds adsorption chiller[J].Applied Energy, 2017, 205:1081-1090.
    [21] Paulo J V, JoséJ S, Herbert M, et al. Experimental chiller with silica gel:adsorption kinetics analysis and performance evaluation[J]. Energy Conversion and Management, 2017, 132:172-179.
    [22] Chen Q F, Du S W, Yuan Z X, et al. Experimental study on performance change with time of solar adsorption refrigeration system[J]. Applied Thermal Engineering, 2018, 138:386-393.
    [23] Fatih B, Benyoucef K, Miloud T. Experimental investigation of a solar adsorption refrigeration system working with silica gel/water pair:a case study for Bou-Ismail solar data[J]. Solar Energy,2016, 131:165-175.
    [24] Ghilen N, Gabsi S, Messai S, et al. Performance of silica gel-water solar adsorption cooling system[J]. Case Studies in Thermal Engineering, 2016, 8:337-345.
    [25] Sourav M, Pramod K, Kandadai S, et al. Development and performance studies of an air cooled two-stage multi-bed silicagel+water adsorption system[J]. International Journal of Refrigeration, 2016, 67:174-189.
    [26] Bidyut B S, Shigeru K, Kim C N, et al. Study on a dual-mode,multi-stage, multi-bed regenerative adsorption chiller[J].Renewable Energy, 2005, 31(13):2076-2090.
    [27] Yang G Z, Xia Z Z, Wang R Z, et al. Research on a compact adsorption room air conditioner[J]. Energy Conversion and Management, 2006, 47(15/16):2167-2177.
    [28]潘权稳.采用模块化吸附床的硅胶-水吸附式系统制冷性能研究及优化[D].上海:上海交通大学, 2015.Pan Q W. Performance study and optimization of silica gel-water adsorption refrigeration system using modular adsorber[D].Shanghai:Shanghai Jiao Tong University, 2015.
    [29]中华人民共和国国家质量监督检疫总局,中国国家标准化管理委员会.房间空气调节器:GB/T 7725—2004[S].北京:中国标准出版社, 2004.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Room air conditioners:GB/T 7725—2004[S]. Beijing:Standards Press of China, 2004.
    [30]国家质量监督检验检疫总局,卫生部,国家环境保护总局.室内空气质量:GB/T 18883—2002[S].北京:中国标准出版社,2002.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Ministry of Health of the People’s Republic of China, Ministry of Environmental Protection of the People’s Republic of China. Indoor air quality standard:GB/T 18883—2002[S]. Beijing:Standards Press of China, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700