明胶基复合水凝胶研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in gelatin-based composite hydrogel
  • 作者:刘瑞雪 ; 周腾 ; 樊晓敏 ; 李云秋 ; 冯皓泽
  • 英文作者:LIU Ruixue;ZHOU Teng;FAN Xiaomin;LI Yunqiu;FENG Haoze;College of Material and Chemical Engineering,Zhengzhou University of Light Industry;
  • 关键词:明胶基复合水凝胶 ; 交联改性 ; 互穿网络 ; 双网络 ; 纳米复合
  • 英文关键词:gelation-based composite hydrogel;;cross-linking modification;;interpenetrating network;;double network;;nanocomposite
  • 中文刊名:ZZQB
  • 英文刊名:Journal of Light Industry
  • 机构:郑州轻工业学院材料与化学工程学院;
  • 出版日期:2018-12-18 18:09
  • 出版单位:轻工学报
  • 年:2018
  • 期:v.33;No.154
  • 基金:国家自然科学基金项目(21474092);; 河南省留学归国人员择优资助项目;; 郑州轻工业学院博士基金项目
  • 语种:中文;
  • 页:ZZQB201806007
  • 页数:14
  • CN:06
  • ISSN:41-1437/TS
  • 分类号:48-60+87
摘要
从明胶的交联改性、与其他高分子共混(包括互穿网络及双网络)和与纳米材料复合三方面对国内外关于明胶基复合水凝胶的力学性能增强与功能化的研究现状进行了综述,指出,相较于物理交联改性,明胶的化学交联改性应用更为广泛,但过多的化学交联剂用量会产生一定的毒性;互穿网络能够结合明胶与其他聚合物网络的性质,而双网络的拓扑结构能够极大地提升明胶基复合水凝胶的力学性能;将不同纳米粒子或具有特殊功能的纳米粒子引入明胶体系中能避免传统化学交联剂产生的毒性,获得具有高拉伸强度的功能化明胶基纳米复合水凝胶.进一步优化设计合成具有与生物组织相适宜的力学强度、生物相容性和组织粘附性的明胶基水凝胶材料,以提高其在复杂环境中的机械性能和刺激响应性能,将会是未来的研究方向.
        The research status of the improvement of the mechanical properties and the functionalization of gelatin-based hydrogels from the cross-linking modification of gelatin,blending with other polymers( including interpenetrating network and dual network),and recombination with nanomaterials was reviewed. It was pointed out that the chemical cross-linking modification of gelatin was more widely used than physical cross-linking modification,but the excessive amount of chemical cross-linking agent would produce certain toxicity; the interpenetrating network could combine gelatin with other polymer networks. The nature of the dual network topology could greatly improve the mechanical properties of gelatin-based composite hydrogels; the introduction of different nanoparticles or nanoparticles with special functions into the gelatin system could avoid the toxicity of traditional chemical crosslinkers. Functionalized gelatin based nanocomposite hydrogel with high tensile strength was obtained. Further optimization and design of gelatin-based hydrogel materials with mechanical strength,biocompatibility and tissue adhesion suitable for biological tissues to improve their mechanical properties and stimuli in complex environments will be the future research direction.
引文
[1] YOUNG S,WONG M,TABATA Y,et al. Gelatin as a delivery vehicle for the controlled release of bioactive molecules[J]. Journal of Controlled Release,2005,109(1/3):256.
    [2] ELZOGHBY A O,SAMY W M,ELGINDY N A.Protein-based nanocarriers as promising drug and gene delivery systems[J]. Journal of Controlled Release,2012,161(1):38.
    [3] WANG H,BOERMAN O C,SARIIBRAHIMOGLU K,et al. Comparison of micro-vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins:Bone morphogenetic protein-2 and alkaline phosphatase[J]. Biomaterials,2012,33(33):8695.
    [4] BHAT R,KARIM A A. Ultraviolet irradiation improves gel strength of fish gelatin[J]. Food Chemistry,2009,113(4):1160.
    [5] LIGUORI A,BIGI A,COLOMBO V,et al.Atmospheric pressure non-equilibrium plasma as a green tool to crosslink gelatin nanofibers[J]. Scientific Reports,2016,6:38542.
    [6] SILVA M A D,KANG J,BUI T T T,et al. Tightening of gelatin chemically crosslinked networks assisted by physical gelation[J]. Journal of Polymer Science B Polymer Physics,2017,55(24):1850.
    [7] NADZIR M M,MUN L S,CHAN P J. Characterization of genipin-crosslinked gelatin hydrogel loaded with curcumin[J]. Journal of Engineering and Applied Sciences,2017,12(9):2294.
    [8] THI P L,LEE Y,DAI H N,et al. In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness[J]. Journal of Materials Chemistry B,2016,5(4):757.
    [9] MYUNG D,WATERS D,WISEMAN M,et al.Progress in the development of interpenetrating polymer network hydrogels[J]. Polymers for Advanced Technologies,2008,19(6):647.
    [10] SPERLING L H. Interpenetrating polymer networks and related materials[J]. Chemistry&Properties of Crosslinked Polymers,1981,12(1):141.
    [11] SPERLING L H,CHIU T W,HARTMAN C P,et al. Latex interpenetrating polymer networks[J]. Angewandte Chemie International Edition,1978,17(2):149.
    [12] HOFFMAN A S. Hydrogels for biomedical applications[J]. Advanced Drug Delivery Reviews,2012,64:18.
    [13] SHEN C,LI Y,WANG H,et al. Mechanically strong interpenetrating network hydrogels for differential cellular adhesion[J]. Rsc Advances,2017,7(29):18046.
    [14] WANG J,WEI J. Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings[J]. Materials Science&Engineering C,2017,80:460.
    [15] SHEN Z S,CUI X,HOU R X,et al. Tough biodegradable chitosan-gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering[J]. Rsc Advances,2015,5(69):55640.
    [16] YU Z,ZHANG Y,GAO Z J,et al. Enhancing mechanical strength of hydrogels via IPN structure[J]. Journal of Applied Polymer Science,2016,134(8):44503.
    [17] PETTIGNANO A,HARING M,BERNARDI L,et al. Self-healing alginate-gelatin biohydrogels based on dynamic covalent chemistry:elucidation of key parameters[J]. Materials Chemistry Frontiers,2017,1(1):73.
    [18] GAN Y,LI P,WANG L,et al. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration[J]. Biomaterials,2017,136:12.
    [19] ZHANG J,WANG J,ZHANG H,et al. Macroporous interpenetrating network of polyethylene glycol(PEG)and gelatin for cartilage regeneration[J]. Biomed Mater,2016,11(3):035014.
    [20] MIAO T,MILLER E J,MCKENZIE C,et al.Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network thetagels for cartilage regeneration[J]. Journal of Materials Chemistry B,2015,3(48):9242.
    [21] ZHANG Z,LIU Y,CHEN X,et al. Multiresponsive polyethylene-polyam ine/gelatin hydrogel induced by non-covalent interactions[J]. Rsc Advances,2016,6(54):48661.
    [22]王茹,王永鑫,陈重一.不同体系的双网络水凝胶及其增强机理[J].材料导报,2015,29(23):41.
    [23] GONG J P,KATSUYAMA Y,KUROKAWA T,et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials,2003,15(14):1155.
    [24] HOU J,REN X,GUAN S,et al. Rapidly recoverable,anti-fatigue,super-tough double-network hydrogels reinforced by macromolecular microspheres[J]. Soft Matter,2017,13(7):1357.
    [25] YAN X,CHEN Q,ZHU L,et al. High strength and self-healable gelatin/polyacrylamide double network hydrogels[J]. Journal of Materials Chemistry B,2017,5(37):7683.
    [26] SANTIN M,HUANG S J,IANNACE S,et al.Synthesis and characterization of a new interpenetrated poly(2-hydroxyethylmethacrylate)-gelatin composite polymer[J]. Biomaterials,1996,17(15):1459.
    [27] HARAGUCHI K,TAKADA T. Characteristic sliding frictional behavior on the surface of nanocomposite hydrogels consisting of organicinorganic network structure[J]. Macromolecular Chemistry&Physics,2005,206(15):1530.
    [28] HARAGUCHI K,TORU TAKERHISA A,FAN S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(Nisopropylacrylamide)and clay[J]. Macromolecules,2002,35(27):10162.
    [29] HARAGUCHI K. Nanocomposite hydrogels[J].Current Opinion in Solid State&Materials Science,2007,11(3):47.
    [30] GAHARWAR A K,PEPPAS N A,KHADEMHOSSEINI A. Nanocomposite hydrogels for biomedical applications[J]. Biotechnol Bioeng,2014,111(3):441.
    [31] LI C,MU C,LIN W,et al. Gelatin effects on the physicochemical and hemocompatible properties of gelatin/PAAm/Laponite nanocomposite hydrogels[J]. ACS Appl Mater Interfaces,2015,7(33):18732.
    [32] RAN J,JIANG P,LIU S,et al. Constructing multicomponent organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering[J]. Materials Science and Engineering C,2017,78:130.
    [33] GARCIAASTRAIN C,CHEN C,BURON M,et al.Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles[J]. Biomacromolecules,2015,16(4):1301.
    [34] BARBUCCI R,PASQUI D,GIANI G,et al. A novel strategy for engineering hydrogels with ferromagnetic nanoparticles as crosslinkers of the polymer chains. Potential applications as a targeted drug delivery system[J]. Soft Matter,2011,7(12):5558.
    [35] DEMARCHI C A,DEBRASSI A,BUZZI F C,et al. A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery:synthesis,characterization and in vitro drug release[J]. Soft Matter,2014,10(19):3441.
    [36] GAHARWAR A K,PEPPAS N A,KHADEMHOSSEINI A. Nanocomposite hydrogels for biomedical applications[J]. Biotechnology&Bioengineering,2014,111(3):441.
    [37] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Materials and methods:electric field effect in atomically thin carbon films[J]. Science,2004(306):666.
    [38] CHUNG C,KIM Y K,SHIN D,et al. Biomedical applications of graphene and graphene oxide[J]. Accounts of Chemical Research,2013,46(10):2211.
    [39] COMPTON O C,CRANFORD S W,PUTZ K W,et al. Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding[J]. Acs Nano,2012,6(3):2008.
    [40] SOLDANO C,MAHMOOD A,DUJARDIN E.Production,properties and potential of graphene[J]. Carbon,2010,48(8):2127.
    [41] WEI P,BAO W,PU Y,et al. Anomalous thermoelectric transport of dirac particles in graphene[J]. Physical Review Letters,2009,102(16):166808.
    [42] ZHU J,CHEN M,HE Q,et al. An overview of the engineered graphene nanostructures and nanocomposites[J]. Rsc Advances,2013,3(45):22790.
    [43] HUANG J,ZHAO L,WANG T,et al. NIR-Triggered rapid shape memory PAM-GO-Gelatin hydrogels with high mechanical strength[J].Acs Applied Materials&Interfaces,2016,8(19):12384.
    [44] PIAO Y,CHEN B. One-pot synthesis and characterization of reduced graphene oxide-gelatin nanocomposite hydrogels[J]. Rsc Advances,2016,6(8):6171.
    [45] HASSANZADEH P,KAZEMZADEHNARBAT M,ROSENZWEIG R,et al. Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl(GelMA)[J]. J Mater Chem B Mater Biol Med,2016,4(15):2539.
    [46] NAN L,WEI C,CHEN G,et al. Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength[J]. Carbohydrate Polymers,2017,171:77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700