结构形式对聚结器性能影响的数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation Analysis of Influence of Structure Form on Coalescer Performance
  • 作者:张津铭 ; 赵立新 ; 包娜 ; 邢雷 ; 刘斌
  • 英文作者:ZHANG Jin-ming;ZHAO Li-xin;BAO Na;XING Lei;LIU Bin;School of Mechanical Science and Engineering, Northeast Petroleum University;Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention;No.8 Oil Extraction Plant,CNPC Changqing Oil Field Co.;
  • 关键词:旋流分离器 ; 聚结器 ; 油滴粒径 ; 聚结性能 ; 油相体积分数
  • 英文关键词:cyclone separator;;coalescer;;oil droplet size;;coalescence;;oil volume fraction
  • 中文刊名:HGJX
  • 英文刊名:Chemical Engineering & Machinery
  • 机构:东北石油大学机械科学与工程学院;黑龙江省石油石化多相介质处理及污染防治重点实验室;中国石油长庆油田分公司第八采油厂;
  • 出版日期:2019-06-15
  • 出版单位:化工机械
  • 年:2019
  • 期:v.46;No.273
  • 基金:国家“863”计划课题(2012AA061303);; 东北石油大学“龙江学者”配套科研经费资助项目(LJ201803)
  • 语种:中文;
  • 页:HGJX201903013
  • 页数:7
  • CN:03
  • ISSN:62-1041/TQ
  • 分类号:70-75+79
摘要
利用计算流体动力学(Computational Fluid Dynamics,CFD)软件Fluent,采用群体平衡模型(Population Balance Model,PBM),以常规双锥型液-液旋流分离器结构为基础,研究聚结器Ⅰ~Ⅵ(不同结构形式)对聚结性能的影响。分析了不同截面上油相体积分布、油相粒径分布及油相迹线分布等,对不同粒径聚结性能的影响,获取了不同结构形式聚结器出口粒径分布和变化规律。结果表明:油相在聚结器Ⅴ经聚结后出口粒径最大可以达到290μm,且含有粒径270、290μm的油相数量最多。同时在截面3,聚结器Ⅴ粒径最大,且整体看聚结器Ⅴ粒径大多集中在200μm,表明聚结器Ⅴ聚结效果最好。
        Through using Fluent software of the CFD, adopting the population balance model(PBM)and basing on the structure of conventional double-cone liquid-liquid cyclone separator, the effects of the coalescer Ⅰ-Ⅵ(six structural forms) on the coalescence performance were studied, including the effect of oil volume distribution, oil particle size distribution and oil trace distribution on the coalescence properties of different particle sizes to get the particle size distribution at the outlets of different structural forms and the change rule. The results show that, the maximum size of the oil phase at the exit of the coalescer Ⅴ can be up to 290μm, and the oil phase with the particle size of 270μm and 290μm is the most abundant. In section 3, the particle size of coalescer Ⅴ is the largest and the particle size of coalescer Ⅴ is mostly concentrated at 200μm in the whole, which indicates that the coalescence effect of coalescer Ⅴ is the best.
引文
[1] Mohayeji M,Farsi M,Rahimpour M R,et al.Modeling and Operability Analysis of Water Separation from Crude Oil in an Industrial Gravitational Coalescer[J].Journal of the Taiwan Institute of Chemical Engineers,2016,60:76~82.
    [2] Akbarian Kakhki N,Farsi M,Rahimpour M R.Effect of Current Frequency on Crude Oil Dehydration in an Industrial Electrostatic Coalescer[J].Journal of the Taiwan Institute of Chemical Engineers,2016,67:1~10.
    [3] Motta A,Borges C,Esquerre K,et al.Oil Produced Water Treatment for Oil Removal by an Integration of Coalescer Bed and Microfiltration Membrane Processes[J].Journal of Membrane Science,2014,469:371~378.
    [4] Kolehmainen E,Turunen I.Micro-scale Liquid-Liquid Separation in a Plate-Type Coalescer[J].Chemical Engineering and Processing,2007,46(9):834~839.
    [5] Yang D H,Xu M H,He L M,et al.The Influence and Optimisation of Electrical Parameters for Enhanced Coalescence under Pulsed DC Electric Field in a Cylindrical Electrostatic Coalescer[J].Chemical Engineering Science,2015,138:71~85.
    [6] Ban T,Shibata M,Kawaizumi F,et al.Enhancement of Phase Separation Using a Drop Coalescer in an Aqueous Two-Phase System[J].Journal of Chromatography B:Biomedical Sciences and Applications,2001,760(1):65~72.
    [7] Chawaloesphonsiya,Painmanakul.Study of Cutting-Oil Emulsion Separation by Coalescer Process in Terms of Medium Characteristics and Bed Packing[J].Separation Science and Technology,2014,49(18):2960~2967.
    [8] Zhao H L,Li G Y.Application of Fibrous Coalescer in the Treatment of Oily Wastewater[J].Procedia Environmental Sciences,2011,10:158~162.
    [9] Rossi F,Colombo S,Pierucci S,et al.Upstream Operations in the Oil Industry:Rigorous Modeling of an Electrostatic Coalescer[J].Engineering,2017,3(2):220~231.
    [10] 曲险峰,倪玲英,刘晓成,等.影响聚结效率因素实验研究[J].过滤与分离,2009,19(3):14~16.
    [11] 袁惠新,张新周.旋流场中聚结过程研究[J].化学工程,2005,33(5):30~33,38.
    [12] 李孟,金建华.新型水处理材料的理论与应用研究[M].武汉:武汉理工大学出版社,2005:144~147.
    [13] 齐岳.油田采出水一次出油技术优化研究[D].青岛:青岛理工大学,2007.
    [14] 桑义敏,李发生,谷庆宝,等.基于石化污泥的新型碳-无机吸附剂材料的粗粒化除油行为研究[J].北京石油化工学院学报,2003,11(2):51~54.
    [15] Engl W,Backov R,Panizza P.Controlled Production of Emulsions and Particles by Milli-and Microfluidic Techniques[J].Current Opinion in Colloid & Interface Science,2008,13(4):206~216.
    [16] 蒋明虎,侯平涛,王震,等.螺旋管聚结机理及数值模拟分析[J].石油机械,2012,40(4):104~107.
    [17] 赵文君,赵立新,徐保蕊,等.聚结-旋流分离装置流场特性的数值模拟分析研究[J].流体机械,2015,43(7):22~26.
    [18] 韩丽艳.同向出流倒锥式旋流器结构设计及分离特性研究[D].大庆:东北石油大学,2013:11~12.
    [19] 赵立新,张淼,刘文庆,等.内锥式脱油旋流器流场分析与结构优化[J].化工机械,2011,38(2):202~205.
    [20] 苏劲,袁智,侍玉苗,等.水力旋流器细粒分离效率优化与数值模拟[J].机械工程学报,2011,47(20):183~190.
    [21] Speziale C G,Thangam S.Analysis of an RNG Based Turbulence Model for Separated Flows[J].International Journal of Engineering Science,1992,30(10):1379~1388.
    [22] Bernardo S,Mori M,Peres A P,et al.3-D Computational Fluid Dynamics for Gas and Gas-Particle Flows in a Cyclone with Different Inlet Section Angles[J].Powder Technology,2006,162(3):190~200.
    [23] Qiu Y F,Deng B Q,Chang Nyung Kim,et al.Numerical Study of the Flow Field and Separation Efficiency of a Divergent Cyclone[J].Powder Technology,2012,217:231~237.
    [24] Chen H,Sun Z,Song X F,et al.A Pseudo-3D Model with 3D Accuracy and 2D Cost for the CFD-PBM Simulation of a Pilot-Scale Rotating Disc Contactor[J].Chemical Engineering Science,2016,139:27~40.
    [25] Liu Y F,Hinrichsen O.Study on CFD-PBM Turbulence Closures Based on k-ε and Reynolds Stress Models for Heterogeneous Bubble Column Flows[J].Computers & Fluids,2014,105:91~100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700