加拿大油砂沥青减压渣油在CO/H_2-H_2O作用下的热改质特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Partial upgrading of vacuum residue from Canadian oil sand bitumen under CO/H_2-H_2O
  • 作者:刘贺 ; 王宗贤 ; 赵翔鵾 ; 李玉星 ; 陈坤 ; 郭爱军
  • 英文作者:LIU He;WANG Zong-xian;ZHAO Xiang-kun;LI Yu-xing;CHEN Kun;GUO Ai-jun;State Key Laboratory of Heavy Oil Processing,College of Chemical Engineering,China University of Petroleum (East China);College of Pipeline and Civil Engineering,China University of Petroleum (East China);
  • 关键词:油砂沥青 ; 合成气 ; 水热裂解 ; 活泼氢 ; 降黏改质
  • 英文关键词:oil sand bitumen;;syngas;;aqua-thermolysis;;active hydrogen;;thermal upgrading
  • 中文刊名:RLHX
  • 英文刊名:Journal of Fuel Chemistry and Technology
  • 机构:中国石油大学(华东)化学工程学院重质油国家重点实验室;中国石油大学(华东)储运与建筑工程学院;
  • 出版日期:2018-01-15 13:25
  • 出版单位:燃料化学学报
  • 年:2018
  • 期:v.46
  • 基金:国家自然科学基金(21776313);; 中国博士后科学基金资助项目(2016M602219);; 山东省自然科学基金博士基金(ZR2017BB021);; 青岛市博士后应用研究项目(2016224);; 重质油国家重点实验室资助项目(SLKZZ-2017003,SLKZZ-2017011);; 山东省重点研发发展计划(2017GGX70108);; 中央高校基本科研业务费专项资金(科技专项,17CX05016);; 中国石油科技创新基金(2017D-5007-0506);; 中国石油天然气股份有限公司攻关项目(PRIKY16066);; 山东省博士后创新项目专项资金(201702028)资助~~
  • 语种:中文;
  • 页:RLHX201801006
  • 页数:9
  • CN:01
  • ISSN:14-1140/TQ
  • 分类号:56-64
摘要
以加拿大油砂沥青大于420℃的减压渣油(BVR)为原料,对比研究其在CO/H_2-H_2O和N_2体系中的热改质特性,通过系统分析BVR在H_2-H_2O、CO-H_2O、N_2-H_2O等不同氢源下的热改质特性以揭示CO/H_2-H_2O对渣油热改质的作用机制,最后探讨合成气压力、含水量以及温度对BVR临CO/H_2-H_2O改质生焦倾向的影响。结果表明,与临氮改质相比,相同反应条件下,合成气和水可使BVR热改质的生焦诱导期延长3.5-6.5 min;相同生焦率(约0.1%)时,合成气和水可显著提升BVR热改质降黏率,410℃时相对临氮改质降黏率为29.1%,而420℃时可达54.6%。比较不同氢源下BVR热改质的生焦诱导期、改质油黏度和安定性、渣油转化率发现,H_2-H_2O、CO-H_2O、N_2-H_2O等均对BVR热改质表现出与CO/H_2-H_2O相同的促进效果,各氢源作用活性的大小顺序为H_2-H_2O>CO/H_2-H_2O>CO-H_2O>N_2-H_2O。由此可知,CO/H_2-H_2O对渣油热改质的促进作用可归因于氢气、CO水热变换新生氢和水热裂解的综合效应,且其中氢气的作用仍最显著。合成气压力、含水量和反应温度可通过影响不同氢源的贡献而调控BVR临CO/H_2-H_2O改质生焦倾向。低成本易获取的合成气可以提供BVR热降黏改质所需氢源,水能够通过CO水热变换反应供出新生活泼氢而协同合成气实现BVR高效改质
        The upgrading of the vacuum residue from Canadian oil sand bitumen was performed in a batch reactor with the syngas(CO/H_2) and H_2O.The effect of CO/H_2-H_2O for residue upgrading was verified.In the presence of CO/H_2-H_2O,the coke induction period is postponed by 3.5-6.5 min.When the coke yield is about 0.1%,the viscosity reduction efficiency can be raised by 29.1% at 410 ℃ and even 54.6% at 420 ℃.The upgrading experiments were also carried out in the presence of N_2-H_2O,CO-H_2O,and H_2-H_2O,respectively.The results showthat the capability to inhibit the coke formation was in the order of H_2-H_2O >CO/H_2-H_2O > CO-H_2O > N_2-H_2O.The impetus of CO/H_2-H_2O to BVR upgrading could be attributed to the active hydrogen mainly from H_2,nascent hydrogen by water-gas shift reaction as well as aqua-thermolysis.The thermal conditions such as the pressure of syngas,water content and reaction temperature could influence the coking propensity of BVR under CO/H_2-H_2O by affecting the three different attributions.These results indicate that the more accessible and low-cost syngas could provide the necessary hydrogen for BVR upgrading.Water presents a synergism with syngas for further promoting the BVR upgrading process.
引文
[1]李振宇,乔明,任文坡.委内瑞拉超重原油和加拿大油砂沥青加工利用现状[J].石油学报(石油加工),2012,28(3):517-524.(LI Zhen-yu,QIAO Ming,Ren Wen-po.Current development of venezuela extra heavy crude and canadian oil sands processing[J].Acta Pet Sin(Pet Process Sect),2012,28(3):517-524.)
    [2]尹佳音,唐葆君.中国石油进口安全影响因素分析[J].中国能源,2016,38(11):29-33.(YIN Jia-yin,TANG Bao-jun.Analysis of influencing factors of China oil security from oil imports[J].Energy China,2016,38(11):29-33.)
    [3]BORDEN K.The challenges of processing and transporting heavy crude[J].Oil Gas Facil,2015,2(5):22-26.
    [4]SANTOS R G,LOH W,BANNWART A C,TREVISAN O V.An overview of heavy oil properties and its recovery and transportation methods[J].Braz J Chem Eng,2014,31(3):571-590.
    [5]王齐,王宗贤,沐宝泉,郭爱军,郭凯黎.委内瑞拉常压渣油供氢热转化研究[J].燃料化学学报,2012,40(10):1200-1205.(WANG Qi,WANG Zong-xian,MU Bao-quan,GUO Ai-jun,GUO Kai-li.Hydrogen donor visbreaking of Venezuelan atmospheric residue[J].J Fuel Chem Technol,2012,40(10):1200-1205.)
    [6]ZHANG N,ZHAO S,SUN X,XU Z,XU C.Storage stability of the visbreaking product from venezuela heavy oil[J].Energy Fuels,2010,24(7):3970-3976.
    [7]王齐,郭磊,王宗贤,沐宝泉,郭爱军,刘贺.委内瑞拉减压渣油供氢热转化基础研究[J].燃料化学学报,2012,40(11):1317-1322.(WANG Qi,GUO Lei,WANG Zong-xian,MU Bao-quan,GUO Ai-jun,LIU He.Hydrogen donor visbreaking of venezuelan vacuum residue[J].J Fuel Chem Technol,2012,40(11):1317-1322.)
    [8]TAKATUKA T,WADA Y,FUKUI Y,KOMATSU S,SHIMIZU S.Vis ABC process[C]//Heavy Oil and Oil Sands Technical Symposium,Calgary,Canada,1988.
    [9]冯婉璐,吴诗勇,尤全,吴幼青,郑化安,闵小建.合成气气氛下含水量对锡林浩特煤液化性能的影响[J].华东理工大学学报(自然科学版),2017,43(2):156-161.(FENG Wan-lu,WU Shi-yong,YOU Quan,WU You-qing,ZHENG Hua-an,MIN Xiao-jian.Effect of moisture amount on liquefaction of Xinlinhaote coal under syngas[J].J East China Univ Sci Technol(Nat Sci Ed),2017,43(2):156-161.)
    [10]熊奇,乔建超,韩菊红,盛清涛,申峻.非纯氢气氛下煤直接液化的研究[J].煤化工,2013,41(5):21-24.(XIONG Qi,QIAO Jian-chao,HAN Ju-hong,SHENG Qing-tao,SHEN Jun.Study on direct coal liquefaction in non-pure hydrogen atmosphere[J].Coal Chem Ind,2013,41(5):21-24.)
    [11]袁明江,赵锁奇,闫东菊.合成气氢源下悬浮床加氢反应焦炭及催化剂特性分析[J].石油炼制与化工,2010,41(10):52-57.(YUAN Ming-jiang,ZHAO Suo-qi,YAN Dong-ju.An analysis of coke and dispersed catalysts in slurry-bed hydrocracking using syngas as hydrogen source[J].Pet Process Petrochem,2010,41(10):52-57.)
    [12]王刚,李文,衣悦涛,薛钦昭,李保庆.氢气和合成气下生物质高压液化过程的实验研究[J].燃料化学学报,2008,36(5):563-569.(WANG Gang,LI Wen,YI Yue-tao,XUE Qin-zhao,LI Bao-qing.Experimental study on high-pressure liquefaction of biomass in H2and syngas[J].J Fuel Chem Technol,2008,36(5):563-569.)
    [13]XU Y,YUAN M,ZHAO S,XU C.Upgrading heavy oil using syngas as the hydrogen source with dispersed catalysts[J].Pet Sci Technol,2009,27(7):712-732.
    [14]YAN D,YUAN M,SUN X,ZHAO S.A Fundamental research for upgrading heavy oil using syngas as hydrogen source[C]//Proceedings of 1stw orld heavy oil conference,2006,930-941.
    [15]HOOK B D,AKGERMAN A.Desulfurization of dibenzothiophene by in-situ hydrogen generation through a water gas shift reaction[J].Ind Eng Chem Process Des Dev,1986,25(25):278-284.
    [16]LIU C,NG F T T.HDS of DBT using in situ generated hydrogen in the presence of dispersed Mo catalysts II.Comparison between in situ hydrogen and molecular H2[J].Chin J Catal,1999,20(5):597-59.
    [17]NG F T T,TSAKIRI S K.Activation of water in emulsion for catalytic desulphurization of benzothiophene[J].Fuel,1992,71(11):1309-1314.
    [18]ALGHAMDI A.Hydrodesulphurization of light gas oil using hydrogen from the water gas shift reaction[D].Waterloo:University of Waterloo,2009.
    [19]LIU K.Hydrodesulfurization and hydrodenitrogenation of model,compounds using in-situ hydrogen over nano-dispersed,Mo sulfide based catalysts[D].Waterloo:University of Waterloo,2010.
    [20]JIA L.Oil sands bitumen emulsion upgrading by using in situ hydrogen generated through the water gas shift reaction[D].Waterloo:University of Waterloo,2014.
    [21]CHOY C.Naphthalene hydrogenation with water gas shift in model oil/water emulsion slurry over molybdenum sulfide[D].Waterloo:University of Waterloo,2009.
    [22]ARAI K,TADAFUMI ADSCHIRI A,WATANABE M.Hydrogenation of hydrocarbons through partial oxidation in supercritical water[J].Ind Eng Chem Res,2000,39(12):4697-4701.
    [23]SATO T,SUMITA T,ITOH N.Effect of CO addition on upgrading bitumen in supercritical water[J].J Supercrit Fluids,2015,104:171-176.
    [24]YUAN P Q,CHENG Z M,JIANG W L,ZHANG R,YUAN W K.Catalytic desulfurization of residual oil through partial oxidation in supercritical w ater[J].J Supercrit Fluids,2005,35(1):70-75.
    [25]程健,刘以红,罗运华,刘国祥,阙国和.孤岛渣油超临界水-合成气中悬浮床加氢裂化反应研究Ⅰ.催化剂的影响[J].燃料化学学报,2003,31(6):574-578.(CHENG Jian,LIU Yi-hong,LUO Yun-hua,LIU Guo-xiang,QUE Guo-he.Hydrocracking of Gudao residual oil in suspended bed using supercritical w ater-syngas as hydrogen sourceⅠ.The effect of catalyst on hydrocracking[J].J Fuel Chem Technol,2003,31(6):574-578.)
    [26]程健,李晶,刘以红,罗运华,刘国祥,阙国和.孤岛渣油超临界水-合成气中悬浮床加氢裂化反应研究Ⅱ.不同氢源下的加氢裂化反应[J].燃料化学学报,2004,32(2):180-184.(CHENG Jian,LI Jing,LIU Yi-hong,LUO Yun-hua,LIU Guo-xiang,QUE Guo-he.Gudao residual oil hydrocracking with dispersed catalysts using supercritical w ater-syngas as hydrogen sourceⅡ.The comparison of residue hydrocracking using different hydrogen sources[J].J Fuel Chem Technol,2004,32(2):180-184.)
    [27]张龙力,张世杰,杨国华,蒋云,阙国和.常压渣油热反应过程中胶体的稳定性[J].石油学报(石油加工),2003,19(2):82-87.(ZHANG Long-li,ZHANG Shi-jie,YANG Guo-hua,JIANG Yun,QUE Guo-he.Colloid stability of atmospheric residual oil during thermal reaction[J].Acta Pet Sin(Pet Process Sect),2003,19(2):82-87.)
    [28]张龙力,杨国华,阙国和,杨朝合,山红红.大港常压渣油临氮与临氢热反应过程中胶体稳定性变化研究[J].燃料化学学报,2011,39(9):682-688.(ZHANG Long-li,YANG Guo-hua,QUE Guo-he,YANG Chao-he,SHAN Hong-hong.Colloidal stability variation of Dagang atmosphere residue during thermal reaction under nitrogen or hydrogen[J].J Fuel Chem Technol,2011,39(9):682-688.)
    [29]郭爱军,薛鹏,陈建涛,王宗贤.超稠油掺炼供氢剂的减黏裂化研究[J].炼油技术与工程,2013,43(5):28-32.(GUO Ai-jun,XUE Peng,CHEN Jian-tao,WANG Zong-xian.Study on application of hydrogen donor in visbreaking of ultra-heavy oil[J].Pet Refin Eng,2013,43(5):28-32.)
    [30]MURAZA O,GALADIMA A.Aquathermolysis of heavy oil:A review and perspective on catalyst development[J].Fuel,2015,157:219-231.
    [31]吴川,雷光伦,姚传进,盖平原,曹嫣镔,李啸南.双亲催化剂作用超稠油水热裂解降黏机理研究[J].燃料化学学报,2010,38(6):684-690.(WU Chuan,LEI Guang-lun,YAO Chuan-jin,GAI Ping-yuan,CAO Yan-bin,LI Xiao-nan.Mechanism for reducing the viscosity of extraheavy oil by aquathermolysis w ith an amphiphilic catalyst[J].J Fuel Chem Technol,2010,38(6):684-690.)
    [32]樊泽霞,赵福麟,王杰祥,巩永刚.超稠油供氢水热裂解改质降黏研究[J].燃料化学学报,2006,34(3):315-318.(FAN Ze-xia,ZHAO Fu-lin,WANG Jie-xiang,GONG Yong-gang.Upgrading and viscosity reduction of super heavy oil by aquathermolysis w ith hydrogen donor[J].J Fuel Chem Technol,2006,34(3):315-318.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700