稠油降黏方法研究现状及发展趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research status and development trend of heavy oil reducing technology
  • 作者:解来宝 ; 吴玉国 ; 宫克 ; 宋博 ; 蒋硕硕 ; 王彤宇
  • 英文作者:XIE Lai-bao;WU Yu-guo;GONG Ke;SONG Bo;JIANG Shuo-shuo;WANG Tong-yu;College of Petroleum Engineering,Liaoning Shihua University;
  • 关键词:稠油 ; 降黏方法 ; 加热 ; 改质 ; 表面活性剂 ; 微波 ; 微生物
  • 英文关键词:heavy oil;;viscosity reduction method;;heating;;modification;;surfactant;;microwave;;microorganism
  • 中文刊名:SXHG
  • 英文刊名:Applied Chemical Industry
  • 机构:辽宁石油化工大学石油天然气工程学院;
  • 出版日期:2018-04-02 16:32
  • 出版单位:应用化工
  • 年:2018
  • 期:v.47;No.316
  • 基金:辽宁省教育厅科学研究项目(L20154306)
  • 语种:中文;
  • 页:SXHG201806051
  • 页数:5
  • CN:06
  • ISSN:61-1370/TQ
  • 分类号:223-227
摘要
综述了当前应用比较广泛的稠油(超稠油和特稠油)降黏方法的降黏原理以及优缺点,常用的降黏方法包括掺稀油、加热、微波加热、改质、化学降黏剂以及微生物降黏;掺稀油降黏技术的实施受稀油来源的限制;加热降黏能耗大,经济损耗高;微波加热在目前并不能实现规模化降黏;改质降黏要求复杂的反应装置、严格的反应条件;微生物降黏优势明显,但仍然缺乏相应的理论与技术支持。相对而言,化学降黏剂降粘技术臻于完善,且成本低,易于实现。分析认为,化学降黏降黏技术优势明显,建议优先考虑。
        This paper summarizes the principle of reducing viscosity and the advantages and disadvantages of heavy oil( super heavy oil and special heavy oil) viscosity reduction method. The commonly used methods of reducing viscosity include mixing oil,heating,microwave heating,modification and chemical viscosity reduction as well as microbial viscosity reduction;mixed with thin oil viscosity reduction technology by the implementation of limited oil source; heating viscosity reduction energy consumption,high economic losses;microwave heating at present can not achieve large-scale viscosity reduction; of the reaction device,strict reaction conditions;microbial viscosity reduction obvious advantages,but still lack the corresponding theoretical and technical support. Relatively speaking,chemical viscosity reducing agent viscosity reduction technology is perfect,and low cost,easy to achieve. Analysis that the chemical viscosity reduction agent viscosity reduction technology has obvious advantages,the proposed priority.
引文
[1]熊彪,张荷,李浩哲,等.稠油开采技术及展望[J].化学工程与装备,2016,2(2):169-171.
    [2]宋斌.稠油降粘工艺技术概述[J].甘肃科技,2015,31(21):28-31.
    [3]刘兴财,苏玉,徐念念,等.稠油降粘工艺技术研究[J].城市建设理论研究:电子版,2015,5(31):2154.
    [4]陈文超.稠油降粘工艺技术研究[J].化工管理,2015,11(11):191.
    [5]潘海滨.稠油降粘主要技术及应用实践刍议[J].中国石油和化工标准与质量,2017,37(6):124-126.
    [6]严大凡.输油管道设计与管理[M].北京:石油工业出版社,1986.
    [7]杜健.关于小洼油田稠油掺稀油生产技术的研究[J].中国石油和化工标准与质量,2016,36(5):9-10.
    [8]张成志.塔河油田稠油井掺稀油降粘工艺的应用分析[J].化工中间体,2015,4(4):55.
    [9]吕政.小洼稠油油藏降掺稀油开发技术研究[J].中国矿业,2016,25(8):156-160.
    [10]Zhu M,Zhong H,Li Y,et al.Research on viscosity-reduction technology by electric heating and blending light oil in ultra-deep heavy oil wells[J].Journal of Petroleum Exploration&Production Technology,2015,5(3):233-239.
    [11]杨兆中,朱静怡,李小刚,等.微波加热技术在非常规油资源中的研究现状与展望[J].化工进展,2016,35(11):3478-3483.
    [12]张美慧.提高稠油开采的技术研究[J].中国石油和化工标准与质量,2014,10(10):37.
    [13]谭旭升.碱酸法提纯石墨及除硅动力学研究[D].武汉:武汉理工大学,2015.
    [14]Muhamad I I,Chang H Q,Selvakumaran S.Preparation and evaluation of water-in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using cellulose acetate membrane[J].Journal of Food Science and Technology,2016,53(4):1845-1855.
    [15]Jalalalhosseini S M.Microwave heating as an enhanced oil recovery method——Potentials and effective parameters[J].Energy Sources Part A Recovery Utilization&Environmental Effects,2015,37(7):742-749.
    [16]Paz P Z S,Hollmann T H,Kermen E,et al.EM heatingstimulated water flooding for medium-heavy oil recovery[J].Transport in Porous Media,2017,119(57):1-19.
    [17]罗万江,兰新哲,宋永辉.油页岩微波热解过程中硫的析出特性[J].燃烧科学与技术,2015(6):561-566.
    [18]罗万江,兰新哲,宋永辉.微波加热技术及其热解油页岩的研究进展[J].材料导报,2014,28(21):109-114.
    [19]封士成,王松波,潘一.微波加热油页岩原位开采的实验装置设计[J].石油管材与仪器,2014,28(3):4-6.
    [20]戴静君,李益良,张立新,等.稠油微波降黏效果实验研究[J].北京石油化工学院学报,2013,21(3):1-3.
    [21]赵文学,韩克江,曾鹤,等.稠油降粘方法的作用机理及研究进展[J].当代化工,2015(6):1365-1367.
    [22]Jia H,Liu P G,Pu W F,et al.In situ catalytic upgrading of heavy crude oil through low-temperature oxidation[J].Petroleum Science,2016,13(3):1-13.
    [23]Zhao F,Liu Y,Fu Z,et al.Using hydrogen donor with oilsoluble catalysts for upgrading heavy oil[J].Russian Journal of Applied Chemistry,2014,87(10):1498-1506.
    [24]刘灏亮,孙铎.蒸汽吞吐中甲酸为供氢体的稠油改质研究[J].化工管理,2017,5(5):148.
    [25]崔盈贤,李晶晶,何柏,等.埕北稠油催化改质降粘实验研究[J].工业催化,2013,21(2):44-47.
    [26]马海程,宋景杨.碳纳米催化剂在稠油改质上的应用[J].探索科学,2016,5(5):194.
    [27]曹绪龙,赵海娜,马骋,等.阴阳离子表面活性剂混合体系对原油的乳化及增粘行为[J].物理化学学报,2014(7):1297-1302.
    [28]毛金成,刘佳伟,李勇明,等.超稠油化学降粘剂研究与进展[J].应用化工,2016,45(7):1367-1371.
    [29]赵海娜,程新皓,赵欧狄,等.阴阳离子表面活性剂混合体系在克拉玛依油田中获得超低界面张力[J].物理化学学报,2014,30(4):693-698.
    [30]郑力军,杨棠英,刘显,等.超低界面张力驱油用表面活性剂的研究及应用[J].陕西科技大学学报,2014(2):97-100.
    [31]赖小娟,张育超,郭亮,等.超低界面张力表面活性剂的驱油性能研究[J].精细石油化工,2014,31(4):40-44.
    [32]蒲万芬,赵帅,袁成东,等.耐温抗盐聚合物微球/表面活性剂交替段塞调驱实验研究[J].油气藏评价与开发,2016,6(4):69-73.
    [33]葛际江,张强,王娜,等.纳米Si O2和表面活性剂协同稳定的水包油乳状液驱油性能研究[J].科学技术与工程,2015,15(26):27-31.
    [34]石植真.稠油中胶质沥青质的特性及油溶性降粘剂的研究进展[J].化工设计通讯,2016,42(5):49-50.
    [35]陈小凯.油溶性降粘剂SA/MMA/VTEO共聚物的合成与性能评价[J].化学工程师,2016,30(7):37-40.
    [36]李向博,葛明兰,陈金媛,等.稠油油溶性降黏剂的合成与评价[J].科学技术与工程,2016,16(23):177-180.
    [37]罗咏涛,李本高,秦冰.胜利管输稠油油溶性降黏剂的研制[J].石油炼制与化工,2015,46(4):67-71.
    [38]全红平,王斌,秦珊珊,等.阳离子型油溶性稠油降黏剂的研制[J].现代化工,2015,35(4):82-85.
    [39]陈陆建,杨兆中.阴离子型油溶性稠油降黏剂的合成及评价[J].应用化工,2016,45(2):312-315.
    [40]赵玲莉,高雁,张涛,等.采用微生物对石油降黏机制的研究[J].石油化工,2016,45(2):206-209.
    [41]Altunina L K,Svarovskaya L I,Gerelmaa T.An integrated physicochemical and microbiological method for enhanced recovery of viscous oils from low temperature reservoirs of Mongolia[J].Petroleum Chemistry,2013,53(2):87-91.
    [42]Zhang Y,Fu B,Ma D,et al.Studies on the application of chemical and biological viscosity reduction technology[C]//International Conference on Pipelines and Trenchless Technology.NY USA:Curran Associates,Inc,2012:269-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700