金属纳米晶催化稠油原位裂解加氢降黏改质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Viscosity reduction and upgrading of heavy oil by in-situ catalytic cracking hydrogenation method with metal nanocrystals
  • 作者:李彦平 ; 张辉 ; 苏文礼 ; 张连红
  • 英文作者:Li Yanping;Zhang Hui;Su Wenli;Zhang Lianhong;College of Chemistry and Chemical Engineering,Southwest Petroleum University;The Center of New Energy Materials and Technology,Southwest Petroleum University;College of Chemical Engineering,China University of Petroleum-Beijing;
  • 关键词:稠油 ; 催化裂解加氢 ; 降黏改质 ; 金属纳米晶 ; 水合肼
  • 英文关键词:heavy oil;;catalytic cracking hydrogenation;;viscosity reduction and upgrading;;metal nanocrystals;;hydrazine hydrate
  • 中文刊名:SYHG
  • 英文刊名:Petrochemical Technology
  • 机构:西南石油大学化学化工学院;西南石油大学新能源研究中心;中国石油大学(北京)化学工程学院;
  • 出版日期:2019-02-15
  • 出版单位:石油化工
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金资助项目(21406184)
  • 语种:中文;
  • 页:SYHG201902007
  • 页数:7
  • CN:02
  • ISSN:11-2361/TQ
  • 分类号:46-52
摘要
实验制备了单金属Ni、Fe及双金属Ni-Fe合金纳米晶催化剂,并以水合肼(N_2H_4·H_2O)为供氢剂,对旅大32-2脱水原油进行催化裂解加氢改质研究。采用TEM,XRD对所制备的催化剂进行表征;通过正交实验确定了最佳反应条件,并采用GC-MS,FTIR,TG-DSC等测试手段对原油及改质油样进行分析。表征结果显示,金属纳米晶催化剂平均粒径约为5.0~6.0 nm,且分布均匀。实验结果表明,金属纳米晶具有催化稠油大分子裂解并使供氢剂分解析氢双重功能,其中Ni-Fe合金/N_2H_4·H_2O体系共催化作用对稠油的降黏效果最佳,改质后油样中轻质组分含量为89.20%(w),上升了26.86百分点,黏度降至72 mPa·s,降黏率达95.6%;稠油经催化裂解加氢后重质组分结构被破坏,黏度发生不可逆的降低,稠油品质提高。
        Monometallic Ni,Fe and bimetallic Ni-Fe alloy nanocrystal catalysts were prepared and used hydrazine hydrate(N_2H_4·H_2O) as hydrogen donor for the viscosity reduction and upgrading of Lvda 32-2 dehydrated heavy oil by catalytic cracking hydrogenation method. The prepared catalysts were characterized by TEM and XRD methods. The optimal reaction conditions were determined by orthogonal experiments and the properties of crude oil and upgrading oil were analyzed by GCMS,FTIR,TG-DSC methods. The characterization results showed that average particle size of the metal nanocrystals was about 5.0 to 6.0 nm and particles distribution was uniform. The experimental results revealed that metal nanocrystals have dual functions of promoting catalytic cracking of heavy oil macromolecules and catalyzing hydrogen donor decomposition to hydrogen,and Ni-Fe alloy/N_2H_4·H_2O system showed best effect on viscosity reduction. The light component content of the upgrading oil was 89.20%(w) and which increased by 26.86 percentage point,the viscosity decreased to 72 mPa·s and viscosity reduction rate reached 95.6%;the structure of heavy components was destroyed after catalytic cracking hydrogenation;viscosity was reduced irreversibly;and quality of crude oil was improved.
引文
[1]晏陶燕,杨敬一,徐心茹.聚酯型降粘剂的合成及用于稠油降粘的效果[J].化工进展,2017,36(6):2282-2288.
    [2]Alfi M,Barrufet M A,Da S P F,et al.Simultaneous application of heat and electron particles to effectively reduce the viscosity of heavy deasphalted petroleum fluids[J].Energy Fuels,2013,27(9):5116-5127.
    [3]Pei Haihua,Zhang Guicai,Ge Jijiang,et al.Analysis of microscopic displacement mechanisms of alkaline flooding for enhanced heavy-oil recovery[J].Energy Fuels,2011,25(10):4423-4429.
    [4]Pei Haihua,Zhang Guicai,Ge Jijiang,et al.Comparative effectiveness of alkaline flooding and alkaline-surfactant flooding for improved heavy-oil recovery[J].J Vib Shock,2012,31(14):52-55.
    [5]吴信朋,李燕,宋林花.稠油开采中降粘技术研究进展[J].广东化工,2016,43(4):50-53.
    [6]邓刘扬,唐晓东,李晶晶,等.稠油地面催化改质降粘技术的研究进展[J].石油化工,2016,45(2):237-243.
    [7]李晨,苏路,李秋叶,等.稠油催化降粘技术开发研究进展[J].化学研究,2015,26(3):323-330.
    [8]Clark P D,Clark R A,Hyne J B,et al.Studies on the effect of metal species on oil sands undergoing steam treatments[J].AOSTRA J Res,1990,53(6):53-64.
    [9]崔盈贤,李晶晶,何柏,等.埕北稠油催化改质降粘实验研究[J].工业催化,2013,21(2):44-47.
    [10]吴川,陈艳玲,王颖,等.有机酸盐与甲苯协同作用超稠油催化降粘研究[J].石油天然气学报,2007,29(3):267-269.
    [11]樊泽霞,赵福麟,王杰祥,等.超稠油供氢水热裂解改质降粘研究[J].燃料化学学报,2006,34(3):315-318.
    [12]李博.辽河油田催化供氢稠油改质的实验[J].大庆石油学院学报,2005,28(4):24-26.
    [13]Chen Yanling,Wang Yuanqing,Wu Chuan,et al.Laboratory experiments and field tests of an amphiphilic metallic chelate for catalytic aquathermolysis of heavy oil[J].Energy Fuels,2008,22(3):1502-1508.
    [14]秦文龙,苏碧云,蒲春生.稠油井下改质降粘开采中高效催化剂的应用[J].石油学报:石油加工,2009,25(6):772-776.
    [15]赵法军,王广昀,哈斯,等.国内外稠油和沥青VAPEX技术发展现状与分析[J].化工进展,2012,31(2):304-309.
    [16]周明辉,孙文杰,李克文.纳米催化剂辅助超稠油氧化改质实验研究[J].中国科学:科学技术,2017,47(2):197-203.
    [17]李伟,朱建华,齐建华.纳米Ni催化剂在超稠油水热裂解降粘中的应用研究[J].燃料化学学报,2007,35(2):176-180.
    [18]石岩松,赵法军.应用于稠油降粘改质中的超分散纳米催化剂的研究进展与前景展望[J].当代化工,2015,44(12):2805-2810.
    [19]Li Chun,Wang Tao,Chu Wei,et al.Synthesis of octahedral truncated octahedral and cubic Rh2Ni nanocrystals and their structure-activity relationship for the decomposition of hydrazine in aqueous solution to hydrogen[J].Nanoscale,2016,8(13):7043-7055.
    [20]Tong Dongge,Chu Wei,Wu Ping,et al.Honeycomb-like Co-B amorphous alloy catalysts assembled by a solution plasma process show enhanced catalytic hydrolysis activity for hydrogen generation[J].RSC Adv,2012,2(6):2369-2376.
    [21]Varin R A,Bidabadi A S.Nanostructured complex hydride systems for hydrogen generation[J].Energy,2015,3(1):121-143.
    [22]Tong Dongge,Zeng Xiaoli,Chu Wei,et al.Preparation of monodispersed cobalt boron-spherical nanoparticles and their behavior during the catalytic decomposition of hydrous hydrazine[J].Mater Res Bull,2010,45(4):442-447.
    [23]李秀娟.国内外稠油资源的分类评价方法[J].内蒙古石油化工,2008,21:61-62.
    [24]国家能源局.NB/SH/T 0509-2010石油沥青四组分测定法[S].北京:中国石化出版社,2010.
    [25]冯瑶瑶.磁性乳化剂的制备及其在稠油降粘中的应用[D].郑州:河南大学,2017.
    [26]林世雄.石油炼制工程[M].北京:石油工业出版社,2000:389.
    [27]Li Jian,Chen Yanling,Liu Hua,et al.Influences on the aquathermolysis of heavy oil catalyzed by two different catalytic ions:Cu2+and Fe3+[J].Energy Fuels,2013,27(5):2555-2562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700