重质油与长焰煤共加氢反应性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Co-Hydrogenation Performance of Heavy Oil With Long Flame Coal
  • 作者:胡发亭 ; 李军芳 ; 毛学锋
  • 英文作者:HU Fating;LI Junfang;MAO Xuefeng;Beijing Research Institute of Coal Chemistry, State Key Laboratory of Coal Mining and Clean Utilization, National Energy Technology and Equipment Laboratory of Coal Utilization and Emission Control, China Coal Research Institute;
  • 关键词:催化裂化油浆 ; 高温煤焦油 ; 长焰煤 ; 煤油共加氢 ; 反应性能
  • 英文关键词:fluid catalytic cracking slurry;;high temperature coal tar;;long flame coal;;coal-oil co-processing;;reaction performance
  • 中文刊名:SXJG
  • 英文刊名:Acta Petrolei Sinica(Petroleum Processing Section)
  • 机构:煤炭科学技术研究院有限公司煤化工分院煤炭资源高效开采与洁净利用国家重点实验室国家能源煤炭高效利用与节能减排技术装备重点实验室;
  • 出版日期:2019-07-25
  • 出版单位:石油学报(石油加工)
  • 年:2019
  • 期:v.35
  • 基金:国家重点研发计划基金项目(2018YFB0604601)资助
  • 语种:中文;
  • 页:SXJG201904030
  • 页数:9
  • CN:04
  • ISSN:11-2129/TE
  • 分类号:192-200
摘要
将高温煤焦油、催化裂化油浆分别与新疆长焰煤进行共处理实验,考察了实验条件对共处理反应性能的影响。综合分析共处理条件对原料油转化率、油产率、气产率和沥青质产率的影响规律,得到合适的实验条件为:催化剂质量分数1%,重质油与长焰煤质量比2∶1,反应温度450℃,氢初压10 MPa,反应时间120 min。对煤-油共处理产物进行蒸馏特性分析可知:高温煤焦油共处理产物主要集中在低于230℃馏分,收率为35.14%;催化裂化油浆共处理产物主要集中在170~370℃和370~500℃馏分。
        Co-hydrogenation of high temperature coal tar and FCC slurry with Xinjiang long flame coal were carried out. The effects of test conditions on co-treatment reaction performance was investigated. The influences of co-treatment conditions on the feed oil conversion, oil yield, gas yield and asphaltene yield were comprehensively analyzed. The optimized experimental conditions were confirmed as follows: catalyst mass fraction of 1%, ratio of oil to coal of 2∶1, reaction temperature of 450 ℃, initial hydrogen pressure of 10 MPa, reaction time of 120 min. The distillation characteristics of co-processing products were analyzed. The products of coal-derived oil are mainly concentrated in fractions of less than 230 ℃ with a yield of 35.14%. The products of FCC slurry are mainly concentrated at 170-370 ℃ and 370-500 ℃, respectively.
引文
[1]孙昱东.原料组成对渣油加氢转化性能及催化剂性质的影响[D].上海:华东理工大学,2011.
    [2]姚春雷,全辉,张忠清.中低温煤焦油加氢生产清洁燃料油技术[J].化工进展,2013,32(3):501-507.(YAO Chunlei,QUAN Hui,ZHANG Zhongqing.Hydrogenation of medium and low temperature coal tars for production of clean fuel oil[J].Chemical Industry and Engineering Progress,2013,32(3):501-507.)
    [3]张艳梅,赵广辉,卢竟蔓,等.催化裂化油浆高值化利用技术研究现状[J].化工进展,2016,35(3):754-757.(ZHANG Yanmei,ZHAO Guanghui,LU Jingman,et al.Current situation of higher value application of FCCslurry[J].Chemical Industry and Engineering Progress,2016,35(3):754-757.)
    [4]田原宇,乔英云,刘锋.劣质重油加工技术的挑战与对策-轻型乘用车电动化对重质油加工的影响[J].石油与天然气化工,2013,42(5):463-467.(TIAN Yuanyu,QIAO Yingyun,LIU Feng.Challenges and countermeasures of inferior quality heavy oil processing technology:Effects of light passenger car electrifying on heavy oil processing[J].Chemical Engineering of Oil&Gas,2013,42(5):463-467.)
    [5]龙军,候焕娣,董明,等.一种劣质重油组合加工方法:CN,103789036A[P].2014-05-14.
    [6]任文坡,李振宇,李雪静,等.渣油深度加氢裂化技术应用现状及新进展[J].化工进展,2016,35(8):2309-2316.(REN Wenpo,LI Zhenyu,LI Xuejing,et al.Application situation and new progress of residuum deep hydrocracking technologies[J].Chemical Industry and Engineering Progress,2016,35(8):2309-2316.)
    [7]王学云.八道湾煤与重油加氢反应匹配性研究[D].北京:煤炭科学研究总院,2016.
    [8]王学云,张晓静,陈亚飞,等.煤油共炼交互影响的初步分析[J].煤质技术,2016,8(1):34-37.(WANGXueyun,ZHANG Xiaojing,CHEN Yafei,et al.The primary analysis of coal-oil co-processing interactions[J].Coal Quality Technology,2016,8(1):34-37.)
    [9]孙晋蒙,刘鑫,李冬,等.中温煤焦油加氢裂化集总动力学研究[J].石油学报(石油加工),2014,30(2):291-297.(SUN Jinmeng,LIU Xin,LI Dong,et al.Study on kinetics of medium temperature coal tar hydrocracking[J].Acta Petrolei Sinica(Petroleum Processing Section),2014,30(2):291-297.)
    [10]黄传峰,李大鹏,杨涛.煤油共炼技术现状及研究趋势讨论[J].现代化工,2016,36(8):8-13.(HUANGChuanfeng,LI Dapeng,YANG Tao.Status and research trends of co-processing of coal and oil[J].Modern Chemical Industry,2016,36(8):8-13.)
    [11]朱豫飞.煤油共炼技术的现状与发展[J].洁净煤技术,2013,19(4):68-72.(ZHU Yufei.Actuality and development of coal and oil co-processing technologies[J].Clean Coal Technology,2013,19(4):68-72.)
    [12]PRIYANTO U,SAKANISHI K,OKUMA O,et al.Optimization of two-stage liquefaction of Tanito Harum coal with FeNi catalyst supported on carbon black[J].Energy&Fuels,2001,15(4):856-862.
    [13]邓文安,秦勇,杨腾飞,等.煤负载Fe/Mo催化剂在煤/油加氢共炼中的应用[J].石油学报(石油加工),2018,34(3):487-493.(DENG Wenan,QIN Yong,YANG Tengfei,et al.Application of coal supported Fe/Mo catalysts in coal/oil co-processing[J].Acta Petrolei Sinica(Petroleum Processing Section),2018,34(3):487-493.)
    [14]WANG Z,YANG J,LIU Z,et al.Coprocessing of Yanzhou coal with a FCC slurry[J].Preprints American Chemical Society Division of Fuel Chemistry,2002,47(1):192-193.
    [15]阎瑞萍,朱继升,杨建丽,等.兖州煤与大庆减压渣油在共处理过程中的相互作用[J].燃料化学学报,2000,28(6):533-536.(YAN Ruiping,ZHU Jisheng,YANG Jianli,et al.Interaction between Yanzhou coal and Daqing vacuum residue during co-treatment[J].Journal of Fuel Chemistry and Technology,2000,28(6):533-536.)
    [16]HU H,BAI J,GUO S,et al.Coal liquefaction with in situ impregnated Fe2(MoS4)3 bimetallic catalyst[J].Fuel,2002,81(11):1521-1524.
    [17]阎瑞萍,朱继升,王志杰,等.兖州煤与石家庄减压渣油共处理的研究Ⅰ共处理对煤液化转化率及产物分布的影响[J].煤炭学报,2000,25(6):655-659.(YANRuiping,ZHU Jisheng,WANG Zhijie,et al.Coprocessing of Yanzhou coal with Shijiazhuang vacuum residⅠCoal conversions and products distribution[J].Journal of China Coal Society,2000,25(6):655-659.)
    [18]胡发亭,李军芳,毛学锋.煤衍生油和低阶煤在固体酸催化剂条件下共处理产物特性[J].石油学报(石油加工),2019,35(3):569-574.(HU Fating,LI Junfang,MAO Xuefeng.Characteristics of hydrogenation coprocessing products of coal-derived oil and low rank coal[J].Acta Petrolei Sinica(Petroleum Processing Section),2019,35(3):569-574.)
    [19]国家质量监督检验检疫总局.煤炭液化反应性的高压釜试验方法:GB/T 33690-2017[S].北京:中国标准出版社,2017.
    [20]颜丙峰.高压釜中煤液化性能评价方法[J].洁净煤技术,2017,23(2):56-59.(YAN Bingfeng.Calculation methods of direct coal liquefaction using autoclave[J].Clean Coal Technology,2017,23(2):56-59.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700