LNG储罐混凝土外罐稳定工况载荷及应力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on the load and stress of the concrete external walls of LNG storage tanks in stable working conditions
  • 作者:李兆慈 ; 陶婧莹 ; 冷明 ; 李小红 ; 张娜
  • 英文作者:Li Zhaoci;Tao Jingying;Leng Ming;Li Xiaohong;Zhang Na;National Engineering Laboratory for Pipeline Safety/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology//China University of Petroleum;
  • 关键词:液化天然气 ; 储罐 ; 载荷 ; 等效处理 ; 有限元 ; 极限承载状态 ; 全容式 ; 混凝土外罐
  • 英文关键词:Liquefied natural gas;;FCCR LNG storage tank;;Load;;Equivalent treatment;;Finite element;;Ultimate limit state of bearing capacity;;Full containment;;Concrete external wall
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:中国石油大学(北京)油气管道输送安全国家工程实验室·城市油气输配技术北京市重点实验室;
  • 出版日期:2018-11-27 10:34
  • 出版单位:天然气工业
  • 年:2018
  • 期:v.38;No.301
  • 基金:国家重点研发计划项目“原油天然气储罐及附属管道、辅助设施安全评定与风险评价预警研究”(编号:2017YFC0805804)
  • 语种:中文;
  • 页:TRQG201811013
  • 页数:8
  • CN:11
  • ISSN:51-1179/TE
  • 分类号:95-102
摘要
LNG储罐结构复杂,构件种类多,受力复杂,分析极限工况下储罐各部位的应力分布,对于研究全容式混凝土LNG储罐失效具有重要的意义。为此,通过对储罐的罐顶结构简化,在考虑储罐受到的可变载荷的基础上,对罐体受力荷载系统进行了分类计算和等效处理,建立罐体承载能力极限状态下的罐顶结构载荷、预应力载荷及其他各类可变载荷的组合工况,并采用ANSYS软件建立简化后预应力混凝土外罐的1/4部分的有限元模型,通过结构化网格处理和易发生应力集中处网格加密处理,对罐体各类荷载进行了等效处理,分析了储罐在承载能力极限状态下的罐体温度和应力分布。结果表明:(1)空罐工况下罐顶处最大受压受拉应力发生在储罐承压环处,最大应变位于最大拉应力-2.81 MPa处;(2)空罐工况下承台最大压应力、最大拉应力均位于罐底部与承台连接处外缘,应变最大值也位于承台与罐底接触外缘,此部位易开裂;(3)空罐工况条件下只有罐顶部与承压环应力达到混凝土破坏极限,而储罐其余部位应力均在材料安全极限范围内;(4)满罐风载/雪载工况下,罐体混凝土墙在各部位均达到混凝土材料强度极限;(5)满罐风载/雪载工况下承台与罐底连接部位处于混凝土材料受拉应力状态,且拉应力强度远远超过强度极限,该部位小裂纹在一定条件下易发生裂纹扩展;(6)罐体在热角保护部位的压应力达到混凝土抗压强度极限。结论认为,该研究成果为全容式混凝土LNG储罐失效分析提供了理论参考。
        LNG tanks are structurally complex with many kinds of components and complicated forces, so to analyze the stress distribution at each part of a tank under extreme working conditions is of great significance to studying the failures of full-containment concrete roof(FCCR) LNG storage tanks. In this paper, classified calculation and equivalent treatment were conducted on the force load system of the tank body by taking the variable load on the tank into consideration after the roof structure of the tanks was simplified. Then, the combined working conditions of tank roof load, pre-stressed load and other variable loads in the ultimate limit state of bearing capacity were established, and the finite element model for 1/4 part of the simplified pre-stressed concrete tank was developed by using the ANSYS software. Finally, various loads on the tank were equivalently treated by conducting the structured mesh processing and the grid encryption processing in the stress concentration area, and the temperature and stress distribution on the tank in the ultimate limit state of bearing capacity were analyzed. And the following research results were obtained. First, in the working condition of an empty tank, the maximum compression and tension stresses on the tank roof are located at the bearing ring of the tank and the maximum strain lies at the position of maximum tension stress-2.81 MPa. Second, in the working condition of an empty tank, both the maximum compression stress and the maximum tension pressure on the cap and the maximum strain are located at the outer edge of the connection position between the tank floor and the cap, where cracking tends to happen easily. Third, in the working condition of an empty tank, only the stress on the tank roof and cap reaches the failure limit of concrete while the stress on the other parts of the tank is in the limit range of material safety. Fourth, in the working condition of a full tank with wind load or snow load, the whole concrete wall of the tank reaches the strength limit of concrete material. Fifth, in the working condition of a full tank with wind load or snow load, the concrete material at connection position between the tank floor and the cap is in the state of tension stress which is much higher than the strength limit, so the small cracks in this position tend to propagate easily in a certain condition. Sixth, the compression stress on a tank at the position of hot angle protection reaches the compressive strength limit of concrete. In conclusion, the research results provide a theoretical reference for analyzing the failures of FCCR LNG storage tanks.
引文
[1]李海润,徐嘉爽,李兆慈.全容式LNG储罐罐体温度场计算及分析[J].天然气与石油,2012,30(4):15-19.Li Hairun,Xu Jiashuang&Li Zhaoci.Calculation and analysis on temperature field in full containment LNG tank[J].Natural Gas and Oil,2012,30(4):15-19.
    [2]王红光,崔金栋.大型双壳低温储罐的设计特点[J].石油化工设备技术,2010,31(4):7-8.Wang Hongguang&Cui Jindong.The design features of large double-shell cryogenic tank[J].Petro-chemical Equipment Technology,2010,31(4):7-8.
    [3]马小红.大型LNG储罐绝热材料及应用[D].兰州:兰州理工大学,2012.Ma Xiaohong.Heat insulating materials and application of largescale LNG storage tank[D].Lanzhou:Lanzhou University of Technology,2012.
    [4]王冰,陈学东,王国平.大型低温LNG储罐设计与建造技术的新进展[J].天然气工业,2010,30(5):108-112.Wang Bing,Chen Xuedong&Wang Guoping.Design of large low-temperature LNG storage tanks and new progress in its construction technology[J].Natural Gas Industry,2010,30(5):108-112.
    [5]豆文娇.大型LNG储罐拱顶结构应力分析[D].兰州:兰州理工大学,2011.Dou Wenjiao.Stress analysis of arch structure of large LNG storage tank[D].Lanzhou:Lanzhou University of Technology,2011.
    [6]顾安忠.液化天然气技术手册[M].北京:机械工业出版社,2010.Gu Anzhong.Handbook of LNG technology[M].Beijing:China Machine Press,2010.
    [7]黄淑女,王作乾.我国第一座16万方全容LNG储罐[J].石油工程建设,2009,35(4):15-17.Huang Shunü&Wang Zuoqian.First 16×104 m3 full capacity LNG storage tank in China[J].Petroleum Engineering Construction,2009,35(4):15-17.
    [8]吕昌海.大型LNG储罐结构及保冷性能研究[D].青岛:青岛科技大学,2010.LüChanghai.Large-scale LNG tank structure and insulation performance research[D].Qingdao:Qingdao University of Science&Technology,2010.
    [9]马志鹏.大型LNG储罐结构动力学分析[D].兰州:兰州理工大学,2015.Ma Zhipeng.Analysis on the structure dynamic of large-scale LNG storage tank[D].Lanzhou:Lanzhou University of Technology,2015.
    [10]中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB50009-2012[S].北京:中国建筑工业出版社,2012.Ministry of Housing and Urban-Rural Development of the PRC.Load code for the design of building structures:GB 50009-2012[S].Beijing:China Architecture&Building Press,2012.
    [11]European Committee For StandArdization.Design and manufacture of site built,vertical,cylindrical,flat-bottomed steel tanks for the storage of refrigerated,liquefied gases with operating temperatures between 0℃and 165℃:EN 14620-2006[S].London:British Standards Institution,2006.
    [12]李兆慈,郭保玲,严俊伟.LNG储罐温度场计算及影响因素分析[J].油气储运,2015,34(3):244-247.Li Zhaoci,Guo Baoling&Yan Junwei.Calculation and influencing factors of temperature field in LNG tank[J].Oil&Gas Storage and Transportation,2015,34(3):244-247.
    [13]庄学强.大型液化天然气储罐泄漏扩散数值模拟[D].武汉:武汉理工大学,2012.Zhuang Xueqiang.Numerical simulation for LNG release&dispersion from large scale tank[D].Wuhan:Wuhan University of Technology,2012.
    [14]郑建华,李金光,程艳芬,武海坤.全容式LNG储罐混凝土外罐的预应力方案计算[J].石油工程建设,2012,38(6):49-52.Zheng Jianhua,Li Jinguang,Cheng Yanfen&Wu Haikun.Prestress calculation for concrete outer tank of full-containment LNG storage tank[J].Petroleum Engineering Construction,2012,38(6):49-52.
    [15]周波.大型LNG储罐在静力及动力工况下的有限元分析[D].天津:天津大学,2011.Zhou Bo.Finite element analysis of large-scale LNG tank under the cases of static and dynamic load[D].Tianjin:Tianjin University,2011.
    [16]孙恒,余霆,马文华,李兆慈.LNG大型储罐角保冷块处温度场的有限元分析[J].低温与超导,2010,38(4):15-16.Sun Heng,Yu Ting,Ma Wenhua&Li Zhaoci.FEM analysis of the temperature distribution of the TCP of a LNG tank[J].Cryogenics and Superconductivity,2010,38(4):15-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700