阶段嗣后充填采场结构参数的多目标多属性优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-objective optimization and multi-attribute decision making on structural parameters of stage backfilling stope
  • 作者:兰明 ; 刘志祥 ; 李夕兵
  • 英文作者:LAN Ming;LIU Zhixiang;LI Xibing;School of Resources and Safety Engineering, Central South University;
  • 关键词:嗣后充填采场 ; 结构参数 ; 数值分析 ; 响应面法 ; 多目标优化 ; 理想点法
  • 英文关键词:stage backfilling stope;;structure parameters;;numerical analysis;;response surface method;;multi-objective optimization;;ideal point method
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:中南大学资源与安全工程学院;
  • 出版日期:2019-02-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2019
  • 期:v.50;No.294
  • 基金:国家自然科学基金重点资助项目(41630642);国家自然科学基金资助项目(51674288);; 湖南省研究生科研创新项目(CX2016B052)~~
  • 语种:中文;
  • 页:ZNGD201902017
  • 页数:9
  • CN:02
  • ISSN:43-1426/N
  • 分类号:131-139
摘要
为确定某金矿阶段嗣后充填采场最优开采参数,采用弹性厚板理论,分析不同跨度下顶柱厚度与最大拉应力的关系;结合矿山实际开采条件,通过中心复合试验设计及数值模拟计算得到不同结构参数下的力学响应;构建最大拉应力、最大压应力和最大竖向位移的二阶响应面模型,研究各响应量之间的关系;通过多目标优化及多属性决策的方法最终实现采场结构参数的综合优化。研究结果表明:顶柱最小厚度为4.00 m;矿柱跨度及顶柱厚度对采场力学响应产生显著影响,采场最优开采尺寸是矿房跨度为29.90m,矿柱跨度为31.40m,顶柱厚度为5.24 m。
        In order to determine the optimum dimensions of the stage backfilling stope of a gold mine, the relationship between the roof thickness and the maximum tensile stress under different spans was analyzed by using the elastic thick plate theory. With consideration of the actual mining conditions of the mine, the mechanical responses under different structural parameters were obtained by means of the central composite test design and the numerical simulation. In addition, the second order response surface models of the maximum tensile stress, the maximum compressive stress and the maximum vertical displacement were performed to investigate the relationship among each response. Finally, the comprehensive optimization of stope structural parameters was realized with the multi-objective optimization and the multi-attribute decision making method. The results show that the minimum roof thickness is 4.00 m. The pillar span and roof thickness have significant impact on the mechanical response. The optimal parameters are determined as follows: the scheme of chamber span is 29.90 m, the pillar span is 34.10 m and the roof thickness is 5.24 m.
引文
[1]李夕兵,姚金蕊,宫凤强.硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报,2011,21(10):2551-2563.LI Xibing,YAO Jinrui,GONG Fengqiang,et al.Dynamic problems in deep exploitation of hard rock metal mines[J].The Chinese Journal of Nonferrous Metals,2011,21(10):2551-2563.
    [2]汪伟,罗周全,秦亚光,等.无底柱深孔后退式崩矿法采场结构参数优化[J].东北大学学报(自然科学版),2016,37(4):578-582.WANG Wei,LUO Zhouquan,QIN Yaguang,et al.Stope parameters optimization of non-pillar longhole retreat caving[J].Journal of Northeastern University(Natural Science),2016,37(4):578-582.
    [3]张建明,陈顺满.基于数值模拟的某铜矿深部采场结构参数优化研究[J].化工矿物与加工,2016(12):47-51.ZHANG Jianming,CHEN Shuman.Optimization of structural parameters for deep stope in a copper mine based on numerical simulation[J].Industrial Minerals&Processing,2016(12):47-51.
    [4]陶干强,孙冰,宋丽霞,等.充填法采场结构参数优化设计[J].采矿与安全工程学报,2009,26(4):460-464.TAO Ganqiang,SUN Bing,SONG Lixia,et al.Optimal design of stope structural parameters using back-filling method[J].Journal of Mining&Safety Engineering,2009,26(4):460-464.
    [5]刘钦,刘志祥,刘爱华,等.金矿采场结构参数混沌优化[J].采矿与安全工程学报,2010,27(4):548-552.LIU Qin,LIU Zhixiang,LIU Aihua,et al.Chaotic optimization of structural parameters in gold mining field[J].Journal of Mining&Safety Engineering,2010,27(4):548-552.
    [6]来兴平,蔡美峰,张冰川.神经网络计算在采场结构参数分析中的应用[J].煤炭学报,2001,26(3):245-248.LAI Xingping,CAI Meifeng,ZHANG Bingchuan.Application of nonlinear neural network to analyze the stope structure parameters[J].Journal of China Coal Society,2001,26(3):245-248.
    [7]彭康,李夕兵,彭述权,等.基于响应面法的海下框架式采场结构优化选择[J].中南大学学报(自然科学版),2011,42(8):2417-2422.PENG Kang,LI Xibing,PENG Shuquan,et al.Optimization of frame stope structure parameters based on response surface method in under-sea mining[J].Journal of Central South University(Science and Technology),2011,42(8):2417-2422.
    [8]程文渊,崔德刚.基于Pareto遗传算法的复合材料机翼优化设计[J].北京航空航天大学学报,2007,33(2):145-148.CHENG Wenyuan,CUI Degang.Optimization for composite wing based on Pareto genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(2):145-148.
    [9]张永,吴晓蓓,徐志良,等.基于Pareto多目标遗传算法的模糊系统设计[J].南京理工大学学报,2007,31(4):430-434.ZHANG Yong,WU Xiaobei,XU Zhiliang,et al.Design of fuzzy systems based on pareto multi-objective genetic algorithm[J].Journal of Nanjing University of Science and Technology,2007,31(4):430-434.
    [10]DELGARM N,SAJADI B,KOWSARY F,et al.Multi-objective optimization of the building energy performance:a simulation-based approach by means of particle swarm optimization(PSO)[J].Applied Energy,2016,170:293-303.
    [11]MARLER R T,ARORA J S.Survey of multi-objective optimization methods for engineering[J].Structural&Multidisciplinary Optimization,2004,26(6):369-395.
    [12]李洁慧,王新民,张钦礼,等.采场结构参数的层次分析和模糊数学综合评价[J].化工矿物与加工,2009,38(9):23-27.LI Jiehui,WANG Xinmin,ZHANG Qinli,et al.Stope structural parameters optimization based on AHP and fuzzy mathematics[J].Industrial Minerals and Processing,2009,38(9):23-27.
    [13]赵国彦,唐洋,刘志祥,等.基于改进的AHP-TOPSIS评判模型的盛大铁矿采矿方法优选[J].科技导报,2014,32(3):25-28.ZHAO Guoyan,TANG Yang,LIU Zhixiang,et al.Mining method optimization of Shengda iron ore based on improved AHP-TOPSIS evaluation model[J].Science&Technology Review,2014,32(3):25-28.
    [14]何福保,沈亚鹏.板壳理论[M].西安:西安交通大学出版社,1993:182-187.HE Fubao,SHEN Yapeng.Theory of plates and shells[M].Xi’an:Xi’an Southwest Jiaotong University Press,1993:182-187.
    [15]赵国彦,马举,彭康,等.基于响应面法的高寒矿山充填配比优化[J].北京科技大学学报,2013,35(5):559-565.ZHAO Guoyan,MA Ju,PENG Kang,et al.Mix ratio optimization of alpine mine backfill based on the response surface method[J].Journal of University of Science and Technology Beijing,2013,35(5):559-565.
    [16]BUKZEM A L,SIGNINI R,SANTOS D M,et al.Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function[J].International Journal of Biological Macromolecules,2016,85:615-624.
    [17]LIN H Y,LIN C J,HUANG M L.Optimization of printed circuit board component placement using an efficient hybrid genetic algorithm[J].Applied Intelligence,2016,45(3):1-16.
    [18]JIANG Shouyong,YANG Shengxiang.A Strength pareto evolutionary algorithm based on reference direction for multi-objective and many-objective optimization[J].IEEETransactions on Evolutionary Computation,2017,21(3):329-346.
    [19]胡旺,YEN G G,张鑫.基于Pareto熵的多目标粒子群优化算法[J].软件学报,2014(5):1025-1050.HU Wang,YEN G G,ZHANG Xin.Multi-objective particle swarm optimization based on pareto entropy[J].Journal of Software,2014,25(5):1025-1050.
    [20]乔俊飞,魏静,韩红桂.基于改进NSGA2算法的给水管网多目标优化设计[J].控制工程,2016,23(12):1861-1866.QIAO Junfei,WEI Jing,HAN Honggui.Multi-objective optimization of water distribution system based on an improved NSGA2 algorithm[J].Control Engineering of China,2016,23(12):1861-1866.
    [21]张楚旋,李夕兵,董陇军,等.微震监测传感器布设方案评价模型及应用[J].东北大学学报(自然科学版),2016,37(4):594-598.ZHANG Chuxuan,LI Xibing,DONG Longjun,et al.Evaluation model of microseismic monitoring sensor layout scheme and its application[J].Journal of Northeastern University(Natural Science),2016,37(4):594-598.
    [22]AKBARI M,SHOJAEEFARD M H,ASADI Parviz,et al.Hybrid multi-objective optimization of microstructural and mechanical properties of B 4 C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II[J].Transactions of Nonferrous Metals Society of China,2017,27(11):2317-2333.
    [23]申毅荣,解建仓.基于熵权和TOPSIS法的水安全模糊物元评价模型研究及其应用[J].系统工程,2014(7):143-148.SHEN Yirong,XIE Jiancang.Fuzzy Matter-element model for evaluating of water safety based on entropy weight and TOPSISand application[J].Systems Engineering,2014(7):143-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700