含油气盆地砂岩目的层油气富集主控因素与基本模式——以渤海湾盆地南堡凹陷新近系砂岩油气藏为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Main controlling factors and basic model for hydrocarbon enrichment in the sandstone target layer of petroliferous basin:a case study of Neogene sandstone reservoirs in Nanpu sag,Bohai Bay Basin
  • 作者:庞礴 ; 董月霞 ; 陈迪 ; 庞雄奇
  • 英文作者:Pang Bo;Dong Yuexia;Chen Di;Pang Xiongqi;State Key Laboratory of Petroleum Resources and Prospecting;College of Geosciences,China University of Petroleum;PetroChina Jidong Oilfield Company;
  • 关键词:油气成藏 ; 新近系 ; 砂岩目的层 ; 南堡凹陷 ; 渤海湾盆地
  • 英文关键词:hydrocarbon accumulation;;Neogene;;sandstone target layer;;Nanpu sag;;Bohai Bay Basin
  • 中文刊名:SYXB
  • 英文刊名:Acta Petrolei Sinica
  • 机构:油气资源探测国家重点实验室;中国石油大学(北京)地球科学学院;中国石油冀东油田公司;
  • 出版日期:2019-05-15
  • 出版单位:石油学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点基础研究发展计划(973)项目(2011CB201100)资助
  • 语种:中文;
  • 页:SYXB201905002
  • 页数:13
  • CN:05
  • ISSN:11-2128/TE
  • 分类号:15-27
摘要
随着油气勘探开发难度越来越大,探究油气富集的主控因素并建立地质模式对于提高勘探成效具有重要的现实意义。以渤海湾盆地南堡凹陷为例,采用统计分析法研究了822口探井中8 520个砂岩目的层段油气富集程度的影响因素与变化特征。分析表明,含油气目的层的孔渗结构、毛细管压力差以及周边源岩的排烃条件是影响油气富集的关键要素。源岩的排烃提供了物质基础,目的层的孔渗结构决定了容积空间,毛细管压力差是油气运移聚集的关键动力,三者缺一不可。在3种要素联合作用下,油气的富集程度随埋藏深度增大呈现出规律性变化。在初始埋藏阶段,目的层的孔隙空间大,但由于内、外毛细管压力差太小且源岩供烃量不足而不利于油气富集;在中等埋深阶段,源岩供烃充足,目的层的孔隙空间较大,内、外毛细管压力差大而有利于油气富集;在埋深较大阶段,源岩供烃潜力减弱,目的层的孔隙空间小,内、外毛细管压力差低,油气富集程度变差;在埋深非常大的阶段,源岩供烃潜力枯竭,目的层中束缚水的饱和度达100%,内、外毛细管压力差消失,油气不能富集成藏。油气的富集模式从机制上解释了高孔渗目的层不一定富集油气、低孔渗目的层有时能够高度富集油气的地质现象,为复杂条件下评价和优先钻探目标提供了新思路和新方法。
        With the increasing difficulty in oil and gas exploration,it is required to explore the main controlling factors of hydrocarbon enrichment and establish the geological model,which is of great practical significance to improve exploration efficiency.Taking the Nanpu sag of Bohai Bay Basin as an example,using the statistical analysis method,this study analyzes the influencing factors and variation characteristics of hydrocarbon enrichment in the 8 520 target layers from 822 exploration wells.The results show that the pore-permeability structure of the hydrocarbon-bearing target layer,the capillary pressure difference,and the hydrocarbon expulsion conditions of surrounding source rocks are the key factors affecting oil and gas enrichment.The hydrocarbon expulsion of source rocks provides a material basis;the pore-permeability structure of the target layer determines the volumetric space;the capillary pressure difference is the key driving force for hydrocarbon migration and accumulation;all three are indispensable.Under the combined action of above three factors,the hydrocarbon migration enrichment shows a regular change with the increase of burial depth.In the initial burial stage,the pore space of the target layer is large,but the capillary pressure difference inside and outside target layer is ultra-small,so that the insufficient hydrocarbon supply from source rock is unbeneficial to the oil and gas enrichment.In the medium-deep burial stage,the sufficient hydrocarbon supply from source rock,large pore space in target layer and large capillary pressure difference inside and outside target layer are conducive to oil and gas enrichment.In the deep burial stage,with weakened hydrocarbon supply potential of source rock,decreased pore space of target layer and low capillary pressure difference,the oil and gas enrichment deteriorates.In the ultra-deep burial stage,due to exhausted hydrocarbon supply potential of source rock,saturation of the bound water in the target layer up to 100% and disappearing capillary pressure difference inside and outside target layer,hydrocarbon cannot be accumulated.The hydrocarbon enrichment mode explains the mechanism and phenomena why the target layers with high porosity and permeability may not necessarily enrich oil and gas while those with low porosity and permeability can highly enrich oil and gas,and provides new ideas and methods for evaluating and optimizing drilling targets under complex conditions.
引文
[1]赵文智,窦立荣.中国陆上剩余油气资源潜力及其分布和勘探对策[J].石油勘探与开发,2001,28(1):1-5.ZHAO Wenzhi,DOU Lirong.Potential,distribution and exploration strategy of petroleum resources remained onshore China[J].Petroleum Exploration and Development,2001,28(1):1-5.
    [2]PANG Xiongqi,CHEN Junqing,LI Sumei,et al.Evaluation method and application of the relative contribution of marine hydrocarbon source rocks in the Tarim Basin:a case study from the Tazhong area[J].Marine and Petroleum Geology,2016,77:1-18.
    [3]BP.com.BP energy outlook:2017 edition[EB/OL].(2017-12-20)[2018-02-10].https:∥www.bp.com/en/global/corporate/energyeconomics/energy-outlook/energy-overview-the-base-case.html.
    [4]吴国干,方辉,韩征,等.“十二五”中国油气储量增长特点及“十三五”储量增长展望[J].石油学报,2016,37(09):1145-1151.WU Guogan,FANG Hui,HAN Zheng,et al.Growth features of measured oil initially in place&gas initially in place during the12th Five-Year Plan and its outlook for the 13th Five-Year Plan in China[J].ACTA Petrolei Sinica,2016,37(09):1145-1151.
    [5]DONG Yuexia,XIAO Long,ZHOU Haimin,et al.The tertiary evolution of the prolific Nanpu sag of Bohai Bay Basin,China:constraints from volcanic records and tectono-stratigraphic sequences[J].Geological Society of America Bulletin,2010,122(3):609-626.
    [6]郑红菊,董月霞,王旭东,等.渤海湾盆地南堡富油气凹陷烃源岩的形成及其特征[J].天然气地球科学,2007,18(1):78-83.ZHENG Hongju,DONG Yuexia,WANG Xudong,et al.The generation and characteristics of source rocks in Nanpu oil-rich depression,Bohai Bay Basin[J].Natural Gas Geoscience,2007,18(1):78-83.
    [7]JIA Haibo,JI Hancheng,LU Chaojin,et al.Sequence stratigraphy and depositional system analysis in Paleogene Nanpu sag:sequence model and sediment partition[J].Geological Journal,2018,53(4):1557-1572.
    [8]李素梅,姜振学,董月霞,等.渤海湾盆地南堡凹陷原油成因类型及其分布规律[J].现代地质,2008,22(5):817-823.LI Sumei,JIANG Zhenxue,DONG Yuexia,et al.Genetic type and distribution of the oils in the Nanpu depression,Bohai Bay Basin[J].Geoscience,2008,22(5):817-823.
    [9]张翠梅,刘晓峰,苏明.南堡凹陷老爷庙地区构造-沉积分析[J].地球科学:中国地质大学学报,2009,34(5):829-834.ZHANG Cuimei,LIU Xiaofeng,SU Ming.Tectono-sedimentary analysis of Laoyemiao region in Nanpu depression[J].Earth Science:Journal of China University of Geosciences,2009,34(5):829-834.
    [10]庞雄奇,黄捍东,林畅松,等.哈萨克斯坦Marsel探区叠复连续气田形成、分布与探测及资源储量评价[J].石油学报,2014,35(6):1012-1056.PANG Xiongqi,HUANG Handong,LIN Changsong,et al.Formation,distribution,exploration,and resource/reserve assessment of superimposed continuous gas field in Marsel exploration area,Kazakhstan[J].Acta Petrolei Sinica,2014,35(6):1012-1056.
    [11]李登华,李建忠,张斌,等.四川盆地侏罗系致密油形成条件、资源潜力与甜点区预测[J].石油学报,2017,38(7):740-752.LI Denghua,LI Jianzhong,ZHANG Bin,et al.Formation condition,resource potential and sweet-spot area prediction of Jurassic tight oil in Sichuan Basin[J].Acta Petrolei Sinica,2017,38(7):740-752.
    [12]BOURDET J,PIRONON J,LEVRESSE G,et al.Petroleum accumulation and leakage in a deeply buried carbonate reservoir,Níspero field(Mexico)[J].Marine and Petroleum Geology,2010,27(1):126-142.
    [13]AL-HASANI A,HAKIMI M H,SAAID I M,et al.Reservoir characteristics of the Kuhlan sandstones from Habban oilfield in the Sabatayn Basin,Yemen and their relevance to reservoir rock quality and petroleum accumulation[J].Journal of African Earth Sciences,2018,145:131-147.
    [14]GUO Xiaowen,LIU Keyu,JIA Chengzao,et al.Effects of tectonic compression on petroleum accumulation in the Kelasu thrust belt of the Kuqa sub-basin,Tarim Basin,NW China[J].Organic Geochemistry,2016,101:22-37.
    [15]胡朝元.生油区控制油气田分布——中国东部陆相盆地进行区域勘探的有效理论[J].石油学报,1982,3(2):9-13.HU Chaoyuan.Source bed controls hydrocarbon habitat in continental basins,East China[J].Acta Petrolei Sinica,1982,3(2):9-13.
    [16]BONS P D,VAN MILLIGEN B P.New experiment to model selforganized critical transport and accumulation of melt and hydrocarbons from their source rocks[J].Geology,2001,29(10):919-922.
    [17]庞正炼,陶士振,张琴,等.四川盆地侏罗系致密油二次运移机制与富集主控因素[J].石油学报,2018,39(11):1211-1222.PANG Zhenglian,TAO Shizhen,ZHANG Qin,et al.Secondary migration mechanism and accumulation controlling factors of Jurassic tight oil in Sichuan Basin[J].Acta Petrolei Sinica,2018,39(11):1211-1222.
    [18]BOLTON A J,MALTMAN A J,FISHER Q.Anisotropic permeability and bimodal pore-size distributions of fine-grained marine sediments[J].Marine and Petroleum Geology,2000,17(6):657-672.
    [19]LI Peng,ZHENG Min,BI He,et al.Pore throat structure and fractal characteristics of tight oil sandstone:a case study in the Ordos Basin,China[J].Journal of Petroleum Science and Engineering,2007,149:665-674.
    [20]陈建平,魏军,倪云燕,等.酒泉盆地酒西坳陷主力烃源岩分布及对油气勘探的启示[J].石油学报,2018,39(11):1223-1240.CHEN Jianping,WEI Jun,NI Yunping,et al.Determination of main source rocks in the Jiuxi depression of Jiuquan Basin and its implications for oil and gas exploration[J].Acta Petrolei Sinica,2018,39(11):1223-1240.
    [21]庞雄奇,霍志鹏,范泊江,等.渤海湾盆地南堡凹陷源控油气作用及成藏体系评价[J].天然气工业,2014,34(1):28-36.PANG Xiongqi,HUO Zhipeng,FAN Bojiang,et al.Control of source rocks on hydrocarbon accumulation and assessment of gas pools in the Nanpu sag,Bohai Bay Basin[J].Natural Gas Industry,2014,34(1):28-36.
    [22]GUO Yingchun,PANG Xiongqi,DONG Yuexia,et al.Hydrocarbon generation and migration in the Nanpu sag,Bohai Bay Basin,eastern China:insight from basin and petroleum system modeling[J].Journal of Asian Earth Sciences,2013,77:140-150.
    [23]周杰,庞雄奇.一种生、排烃量计算方法探讨与应用[J].石油勘探与开发,2002,29(1):24-27.ZHOU Jie,PANG Xiongqi.A method for calculating the quantity of hydrocarbon generation and expulsion[J].Petroleum Exploration and Development,2002,29(1):24-27.
    [24]GUO Yingchun,PANG Xiongqi,LI Zongxing,et al.The critical buoyancy threshold for tight sandstone gas entrapment:physical simulation,interpretation,and implications to the Upper Paleozoic Ordos Basin[J].Journal of Petroleum Science and Engineering,2017,149:88-97.
    [25]DICKEY P A.Possible primary migration of oil from source rock in oil phase:geologic notes[J].AAPG Bulletin,1975,59(2):337-345.
    [26]BONHAM L C.Migration of hydrocarbons in compacting basins[J].AAPG Bulletin,1980,64(4):549-567.
    [27]HUBBERT M K.Entrapment of petroleum under hydrodynamic conditions[J].AAPG Bulletin,1953,37(8):1954-2026.
    [28]ROUCHET J D.Stress fields,a key to oil migration[J].AAPGBulletin,1981,65(1):74-85.
    [29]ENGLAND W A,MACKENZIE A S,MANN D M,et al.The movement and entrapment of petroleum fluids in the subsurface[J].Journal of The Geological Society,1987,114(2):327-347.
    [30]BERG R R.Capillary pressures in stratigraphic traps[J].AAPGBulletin,1975,59(6):939-956.
    [31]付广,王浩然.不同时期油源断裂输导油气有利部位确定方法及其应用[J].石油学报,2018,39(2):180-188.FU Guang,WANG Haoran.Determination method and its application of favorable positions for hydrocarbon transport in oilsource fault during different periods[J].Acta Petrolei Sinica,2018,39(2):180-188.
    [32]姜航,庞雄奇,陈冬霞,等.含油气盆地深层有效砂岩储层判别与定量评价——以塔里木盆地库车坳陷深层为例[J].石油学报,2015,36(S2):112-119.JIANG Hang,PANG Xiongqi,CHEN Dongxia,et al.Effective sandstone reservoir determination and quantitative evaluation of deep strata in Kuqa depression,Tarim Basin[J].Acta Petrolei Sinica,2015,36(S2):112-119.
    [33]庞雄奇,陈冬霞,李丕龙,等.砂岩透镜体成藏门限及控油气作用机理[J].石油学报,2003,24(3):38-41.PANG Xiongqi,CHEN Dongxia,LI Pilong,et al.Accumulation thresholds of sand lens and controlling mechanism for oil and gas distribution[J].Acta Petrolei Sinica,2003,24(3):38-41.
    [34]庞雄奇,陈冬霞,张俊,等.相-势-源复合控油气成藏机制物理模拟实验研究[J].古地理学报,2013,15(5):575-592.PANG Xiongqi,CHEN Dongxia,ZHANG Jun,et al.Physical simulation experimental study on mechanism for hydrocarbon accumulation controlled by facies-potential-source coupling[J].Journal of Palaeogeography,2013,15(5):575-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700