不同氮效率玉米品种亲本自交系花粒期氮素转运特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The characteristics of nitrogen translocation of maize inbred lines with different nitrogen efficiency from anthesis to meturity
  • 作者:温立玉 ; 薛艳芳 ; 张慧 ; 张秀清 ; 高英波 ; 刘开昌 ; 李宗新
  • 英文作者:WEN Li-yu;XUE Yan-fang;ZHANG Hui;ZHANG Xiu-qing;GAO Ying-bo;LIU Kai-chang;LI Zong-xin;Maize Research Institute, Shandong Academy of Agricultural Sciences;National Engineering Laboratory for Wheat and Maize/Key Laboratory of Maize Biology and Genetic Breeding in Northern Huang-Huai-Hai Plain;Crop Research Institute, Shandong Academy of Agricultural Sciences;
  • 关键词:玉米 ; 自交系 ; ; 花粒期 ; 转运
  • 英文关键词:maize;;inbred lines;;nitrogen;;from anthesis to maturity;;translocation
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:山东省农业科学院玉米研究所;小麦玉米国家工程实验室/农业部黄淮海北部玉米生物学与遗传育种重点实验室;山东省农业科学院作物研究所;
  • 出版日期:2019-04-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.127
  • 基金:国家重点研发计划(2017YFD0301005,2017YFD0301003);; 山东省现代农业产业技术体系玉米创新团队项目(SDAIT-02-07);; 山东省重点研发计划(2017GNC11110,2017CXGC0304)资助
  • 语种:中文;
  • 页:ZWYF201904005
  • 页数:11
  • CN:04
  • ISSN:11-3996/S
  • 分类号:48-58
摘要
【目的】为明确不同氮效率玉米品种亲本自交系花粒期氮转运与代谢特性,从溯源的角度探析不同氮效率玉米品种亲本自交系花粒期的氮素吸收、转运与利用特性。【方法】以氮高效型玉米品种‘鲁单818’的亲本自交系(母本Qx508,父本Qxh0121)和氮低效型玉米品种‘鲁单981’亲本自交系(母本Q319,父本Lx9801)为供试材料,盆栽条件下研究不同氮素供应水平(N 0 g/盆、7.1 g/盆和14.2 g/盆,记作N0、N1和N2)对4个不同氮效率玉米亲本自交系花粒期干物质积累、氮素积累、氮素分配与利用效率以及叶片氮代谢关键酶硝酸还原酶活性、可溶性蛋白含量变化的影响,并探讨分析不同氮效率玉米品种氮素利用的生理机制与遗传特性。【结果】吐丝后各自交系干物质由营养器官向生殖器官转移,表现为茎叶干物重显著降低,穗和粒的干物重显著增加,且Qxh0121和Q319的干物质重均显著高于其另一亲本。从吐丝到成熟,茎鞘和叶的氮含量均呈降低的趋势,穗和粒的氮含量显著增加,且Qxh0121和Q319自交系叶片、茎鞘、籽粒氮含量均显著高于其另一亲本自交系。花后氮吸收量均表现为Qxh0121显著高于Qx508,Q319显著高于Lx9801。且在低氮(N1)和高氮(N2)处理下,Qxh0121氮转运效率较Qx508分别高29.2%和14.3%,花后氮转运对籽粒贡献率较Qx508分别高74.0%和17.4%。Q319氮转运效率较Lx9801分别高43.4%和24.7%,花后氮转运对籽粒贡献率较Lx9801分别高75.3%和39.6%。Qxh0121和Q319的产量和氮肥利用效率也高于对应的自交系。在N1和N2水平下,Qxh0121的产量比Qx508分别高43.3%和42.5%,Q319的产量比Lx9801分别高20.2%和10.5%。吐丝至成熟期叶片硝酸还原酶(NR)活性和可溶性蛋白含量的变化均呈单峰曲线,高峰期在吐丝后10 d左右。Qxh0121和Q319的NR活性和可溶性蛋白含量在各时期均高于其另一亲本,表现出较强的氮素吸收和同化能力。【结论】氮高效型玉米品种‘鲁单818’表现为父本高效,氮低效型玉米品种‘鲁单981’表现为母本高效。因此,未来育种应充分挖掘‘鲁单818’的父本Qxh0121及‘鲁单981’的母本Q319的氮高效潜力,提高其花前氮的转移效率以及花后氮向籽粒的分配能力,是其对应杂交种进一步实现高产并增加籽粒氮浓度、减少秸秆氮素残留的关键。
        【Objectives】This study aimed to explore the characteristics of nitrogen(N) uptake, transport and utilization of different maize inbred lines from anthesis to maturity, to reveal their related physiological and inherited mechanisms in N efficiencies.【Methods】Pot experiment method was used in this research. The tested materials included the parent inbred lines of high-N-efficiency maize hybrid cultivar Ludan818(female parent Qx508 and male parent Qxh0121), and the inbred lines of low-N-efficiency maize hybrid cultivar Ludan981(female parent Q319, male parent Lx9801). The four inbred lines were grown in N application rates of 0, 7.1 and14.2 g/pot, denoted by N0, N1 and N2 treatments in turn. The accumulation and distribution of dry matter and N were investigated, and the N utilization efficiency were calculated. The nitrate reductase(NR) activity and the soluble protein contents were determined.【Results】Since starting of anthesis stage, the accumulation of dry matter and N were significantly decreased in the stems and leaves but significantly increased in spikes and grains,these variations in Qxh0121 and Q319 were higher than their corresponding parent inbred lines. During the grainfilling period, the post-anthesis N uptake for Qxh0121 was higher than that for Qx508, and that for Q319 was higher than for Lx9801. Under the low N(N1) and high N(N2) treatments, the N transport efficiency of male parent Qxh0121 was 29.2% and 14.3% higher than the female parent Qx508, and the contribution rate to grain was 74.0% and 17.4% higher, respectively. Likewise, the N transport efficiency in female parent lines Q319 were43.4% and 24.7% higher, and the contribution rate to grain was 75.3% and 39. 6% higher than in the male parent Lx9801, respectively. In each pair of inbred lines, the Qxh0121 and Q319 had relatively high yield and N use efficiency. In N1 and N2 treatments, the yield of Qxh0121 was 43.3% and 42.5% respectively higher than that of Qx508, and yied of Q319 was 20.2% and 10.5% higher than that of Lx9801. The changes of leaf NR activity and soluble protein contents from anthesis to maturity showed a single peak curve with the peak value being around 10 days after anthesis. The leaf NR activity and soluble protein contents of Qxh0121 and Q319 were higher than those of their paired parent at all times, showing a higher ability for N uptake and assimilation.【Conclusions】Among the two pair of inbred lines, the male parent Qxh0121 and the female parent Q319 show high N efficiency. Therefore, using the two inbred lines to breed new cultivar should be attempted for full use of their advantages in N translocation and allocation to grain with high N efficiency to achieve both high yield and grain N concentration while decreasing N residual in stems in their corresponding hybrids.
引文
[1]Chen F J,Fang Z G,Gao Q Y,et al.Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China[J].Science China Life Sciences,2013,56(6):552-560.
    [2]Zhang X,Davidson E A,Mauzerall D L,et al.Managing nitrogen for sustainable development[J].Nature,2015,528:51-59.
    [3]Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327:1008-1010.
    [4]Zhang W F,Cao G X,Li X L,et al.Closing yield gaps in China by empowering smallholder farmers[J].Nature,2016,537:671-674.
    [5]Good A G,Beatty P H.Fertilizing nature:a tragedy of excess in the commons[J].PLoS Biology,2011,9(8):el001124.
    [6]IFA(International Fertilizer Industry Association).IFA data,2011.[DB/OL].http://ifadata.fertilizer.org/ucSearch.aspx,2018-01-20.
    [7]Diaz R J,Rosenberg R.Spreading dead zones and consequences for marine ecosystems[J].Science,2008,321:926-929.
    [8]Zhang W F,Dou Z X,He P,et al.New technologic reduce greenhouse gas emissions from nitrogenous fertilizer in China[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110:375-378.
    [9]Chen X P,Cui Z L,Fan M S,et al.Producing more grain with lower environmental costs[J].Nature,2014,514:486-489.
    [10]Cui Z L,Zhang H Y,Chen X P,et al.Pursuing sustainable productivity with millions of smallholder farmers[J].Nature,2018,555:363-366.
    [11]杨睿,伍晓明,安蓉,等.不同基因型油菜氮素利用效率的差异及其与农艺性状和氮营养性状的关系[J].植物营养与肥料学报,2013,19(3):586-596.Yang R,Wu X M,An R,et al.Differences of nitrogen use efficiency of rapeseed(Brassica napus L.)genotypes and their relations to agronomic and nitrogen characteristics[J].Journal of Plant Nutrition and Fertilizer,2013,19(3):586-596.
    [12]张国平,张光恒.小麦氮素利用效率的基因型差异研究[J].植物营养与肥料学报,1996,4(2):331-336.Zhang G P,Zhang G H.Studies on variation among wheat genotypes in N utilization[J].Plant Nutrition and Fertilizer Science,1996,4(2):331-336.
    [13]刘建安,米国华,陈范骏,等.玉米杂交种氮效率基因型差异[J].植物营养与肥料学报,2002,8(3):276-281.Liu J A,Mi G H,Chen F J,et al.Genotype difference on nitrogen use efficiency among maize hybrids[J].Plant Nutrition and Fertilizer Science,2002,8(3):276-281.
    [14]刘建安,米国华,张福锁.不同基因型玉米氮效率差异的比较研究[J].农业生物技术学报,1999,7(3):248-254.Liu J A,Mi G H,Zhang F S.Difference in nitrogen efficiency among maize genotypes[J].Journal of Agricultural Biotechnology,1999,7(3):248-254.
    [15]Yan P,Yue S C,Qiu M L,et al.Using maize hybrids and in-season nitrogen management to improve grain yield and grain nitrogen concentrations[J].Field Crops Research,2014,166:38-45.
    [16]刘弋菊,孔箐锌,苏胜宝.玉米氮素代谢机制的研究进展[J].玉米科学,2009,17(1):135-138.Liu Y J,,Kong J X,Su S B.Advances in nitrogen metabolism in maize[J].Journal of Corn Sciences,2009,17(1):135-138.
    [17]Ramachandra T V,Krishnamurthy K,Kailasam C.Functional crop and cob growth models of maize(Zea mays L.)cultivars[J].Journal of Agronomy and Crop Science,2010,168(3):208-221.
    [18]董桂春,王余龙,周娟,等.不同氮素籽粒生产效率类型籼稻品种氮素分配与运转的差异[J].作物学报,2009,35(1):149-155.Dong G C,Wang Y L,Zhou J,et al.Difference of nitrogen accumulation and translocation in conventional indica rice cultivars with different nitrogen use efficiency for grain output[J].Acta Agronomica Sinica,2009,35(1):149-155.
    [19]张慧,赵红香,温立玉,等.黄淮海区域30个夏玉米品种干物质积累和氮素转运特性[J].玉米科学,2016,(3):78-84.Zhang H,Zhao H X,Wen L Y,et al.The dry matter accumulation and nitrogen transport characteristics of 30 summer maize varieties in the Huang-Huai-Hai region[J].Journal of Corn Sciences,2016,(3):78-84.
    [20]上海植物生理学会.植物生理学实验手册[M].上海:上海科学技术出版社,1999.115-150.Shanghai Society of Plant Physiology.Experimental manual on plant physiology[M].Shanghai:Shanghai Science and Technology Press,1999.115-150.
    [21]Read S M,Northcote D H.Minimization of variation in the response to different protein of the Coomassie blue G dye-binding assay for protein[J].Analytical Biochemistry,1981,116(1):53-64.
    [22]李文娟,何萍,高强,等.不同氮效率玉米干物质形成及氮素营养特性差异研究[J].植物营养与肥料学报,2010,16(1):51-57.Li W J,He P,Gao Q,et al.Dry matter formation and nitrogen uptake in two maize cultivars differing in nitrogen use efficiency[J].Plant Nutrition and Fertilizer Science,2010,16(1):51-57.
    [23]王丽梅,李世清,邵明安.水、氮供应对玉米冠层营养器官干物质和氮素累积、分配的影响[J].中国农业科学,2010,43(13):2697-2705.Wang L M,Li S P,Shao M A.Effects of N and water supply on dry matter and N accumulation and distribution in maize(Zea mays L.)leaf and straw-sheath[J].Scientia Agricultura Sinica,2010,43(13):2697-2705.
    [24]Worku M,Banziger M,Setal E G.Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids[J].Crop Science,2007,47(2):519-528.
    [25]Schiltz S,Munier J N,Jeudy C,et al.Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling[J].Plant Physiology,2005,137(4):1463-1473.
    [26]Martre P,Porter J R,Jamieson P D,Tribo?E.Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat[J].Plant Physiology,2003,133(4):1959-1967.
    [27]Pommel B,Gallais A,Coque M,et al.Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence[J].European Journal of Agronomy,2006,24(3):203-211.
    [28]Echarte L,Rothstein,S,Tollenaar M.The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid[J].Crop Science,2007,48(2):656-665.
    [29]郭松.持绿性对中国玉米品种氮转移效率的影响及其作用机制[D].北京:中国农业大学博士学位论文,2015.Guo S.Effect of green holding on nitrogen transfer efficiency of Chinese maize varieties and its mechanism[D].Beijing:PhDDissertation of China Agricultural University,2015.
    [30]Subedi K D,Ma B L.Effects of N-deficiency and timing of N supply on the recovery and distribution of labeled 15N in contrasting maize hybrids[J].Plant and Soil,2005,273:189-202.
    [31]崔菁菁,邸玉婷,徐克章,等.吉林省不同年代水稻品种叶片硝酸还原酶的活性变化研究[J].西北农林科技大学学报(自然科学版),2012,40(5):81-86.Cui J J,Di Y T,Xu K Z,et al.Research on the changes of nitrate reductase activity of rice varieties in different years in Jilin province[J].Journal of Northwest Agriculture and Forestry University(Natural Science Edition),2012,40(5):81-86.
    [32]王碧茜,范晓荣,徐国华,等.不同氮效率水稻品种旗叶的衰老特征[J].南京农业大学学报,2010,33(2):8-12.Wang B Q,Fan X R,Xu G H,et al.Characteristics of flag leaf failure of rice varieties with different nitrogen efficiency[J].Journal of Nanjing Agricultural University,2010,33(2):8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700