葡萄霜霉病菌实时荧光定量PCR检测体系的建立和应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Establishment and Application of Real-Time PCR for Quantitatively Detecting Plasmopara viticola in Vitis vinifera
  • 作者:李文学 ; 肖瑞刚 ; 吕苗苗 ; 丁宁 ; 石华荣 ; 顾沛雯
  • 英文作者:LI WenXue;XIAO RuiGang;Lü MiaoMiao;DING Ning;SHI HuaRong;GU PeiWen;School of Agriculture,Ningxia University;Wine School,Ningxia University;
  • 关键词:葡萄霜霉病菌 ; cox2 ; 实时荧光定量PCR ; 潜伏侵染 ; 定量检测
  • 英文关键词:Plasmopara viticola;;cox2;;real-time PCR;;latent infection;;quantitative detection
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:宁夏大学农学院;宁夏大学葡萄酒学院;
  • 出版日期:2019-05-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家科技改革与发展专项(106001000000150012);; 宁夏回族自治区“十三五”重大科技项目(2016BZ06)
  • 语种:中文;
  • 页:ZNYK201909005
  • 页数:12
  • CN:09
  • ISSN:11-1328/S
  • 分类号:60-71
摘要
【目的】葡萄霜霉病是葡萄生产上重要的单年流行病害,研究旨在构建葡萄霜霉病菌(Plasmopara viticola)的实时荧光定量PCR(real-time PCR)检测体系,为葡萄霜霉病的早期诊断和预测预报提供依据。【方法】依据GenBank中葡萄霜霉病菌cox2基因序列设计1对特异性引物(F-cox-Pv/R-Pv),建立并优化常规PCR和real-time PCR反应体系,利用葡萄霜霉病菌、葡萄炭疽病菌(Colletotrichum gloeosporioides)、葡萄白粉病菌(Uncinula necator)、葡萄灰霉病菌(Botrytis cinerea)、葡萄白腐病菌(Coniella diplodiella)、葡萄溃疡病菌(Botryosphaeria dothidea)、白菜黑斑病菌(Alternaria brassicae)、辣椒炭疽病菌(C.capsica)、甘草根腐病菌(Fusarium solani)、西葫芦白粉病菌(Sphaerotheca fuliginea)、番茄菌核病菌(Sclerotinia sclerotiorum)、马铃薯干腐病菌(F.equiseti)、西瓜枯萎病菌(F.oxysporum)、哈茨木霉(Trichoderma harzianum)等14种葡萄及其他作物病原菌和拮抗菌的菌丝DNA进行常规PCR和real-time PCR特异性检测,并对灵敏度和可重复性进行评价。运用已构建的real-time PCR体系对人工接种葡萄霜霉病菌的潜育期叶片内病原菌DNA进行定量检测,利用SPSS 19.0软件分析接种时间与叶片内葡萄霜霉病菌潜伏侵染量的关系。【结果】研究设计的引物特异性高,常规PCR仅对葡萄霜霉病菌DNA有扩增条带,为139 bp;real-time PCR检测结果表明该对引物对葡萄霜霉病菌有唯一的产物吸收峰,对其他供试菌株均未检测到产物吸收峰。常规PCR检测的灵敏度为10 pg·μL~(-1),real-time PCR的灵敏度可达到0.1 pg·μL~(-1),是常规PCR检测灵敏度的100倍。以携带目的基因片段的重组质粒为标准品,构建real-time PCR循环阈值(Ct)与模板浓度的线性关系,标准曲线y=42.27-3.36x,相关系数R~2=0.997,扩增效率为98.50%,线性范围达7个数量级,在2.4×10~3—2.4×10~9 copies/μL呈现良好的线性关系。对人工接种葡萄霜霉病菌的潜育期叶片内病原菌DNA进行real-time PCR检测,结果表明叶片内病原菌潜伏侵染量随接种时间的变化呈指数关系增长,y=6.34×10~4·e~(0.084x),相关系数R~2=0.936。该real-time PCR检测体系在接种6 h后就可以检测到葡萄霜霉病菌DNA,检测量为5.68×10~4 copies/μL病原菌DNA。【结论】构建的葡萄霜霉病菌real-time PCR检测体系的灵敏度远高于常规PCR,且特异性强、重复性好,其Ct值与模板浓度呈较好的线性关系,扩增效率高,可用于定量检测葡萄霜霉病菌的潜伏侵染量。
        【Objective】Grape downy mildew caused by Plasmopara viticola is one of the most important monoetic diseases on Vitis vinifera.The objective of this study is to establish a real-time PCR detection system of P.viticola based on the pathogen sequence information,and to provide a scientific basis for early diagnosis and prediction of grape downy mildew.【Method】According to the cox2 gene sequence of P.viticola in GenBank,a pair of specific primers,F-cox-Pv/R-Pv,was designed to establish and optimize the conventional PCR and real-time PCR reaction system.The mycelium DNA of 14 species of grape and other crop pathogens and antagonistic fungus(including P.viticola,Colletotrichum gloeosporioides,Uncinula necator,Botrytis cinerea,Coniella diplodiella,Botryosphaeria dothidea,Alternaria brassicae,C.capsica,Fusarium solani,Sphaerotheca fuliginea,Sclerotinia sclerotiorum,F.equiseti,F.oxysporum,Trichoderma harzianum)were used to detect the specificity of conventional PCR and real-time PCR.The sensitivity and repeatability of the system were also evaluated.The pathogen DNA in the grape leaves during the latent infection period of artificial inoculation with P.viticola was quantitatively detected by the established real-time PCR system.The relationship between inoculation time and latent infection amount of P.viticola in the grape leaves was analyzed by SPSS 19.0 software.【Result】The primers designed in this study had high specificity.A 139 bp fragment of genome DNA was only amplified from P.viticola by conventional PCR.The detection results of real-time PCR assays showed that the primers had only one absorption peak for P.viticola,and no product absorption peak was detected for other test strains.The sensitivity of conventional PCR was 10 pg·μL~(-1) genomic DNA,while the sensitivity of real-time PCR was 0.1 pg·μL~(-1),which was 100 times higher than that of the conventional PCR.The linear relationship between real-time PCR cycle threshold(Ct)and template concentration was constructed by using recombinant plasmid containing cox2 gene fragment as standard material.The standard curve was y=42.27-3.36x,with the correlation coefficient of 0.997 and amplification efficiency of 98.50%.The linear range was up to 7 orders of magnitude,showing a good linear relationship at 2.4×10~3-2.4×10~9 copies/μL.The real-time PCR system was used to detect the pathogen DNA in the grape leaves during the latent infection period of artificial inoculation with P.viticola.The results showed that the latent infection of P.viticola in the grape leaves increased exponentially with the change of inoculation time,the curve equation was y=6.34×10~4·e~(0.084x),with the correlation coefficient of 0.936.The real-time PCR system could detect the P.viticola DNA 6 h after inoculation,and the DNA content was 5.68×10~(4 )copies/μL.【Conclusion】The sensitivity of the established real-time PCR system for detection of grape downy mildew is much higher than that of conventional PCR,and the specificity and reproducibility of this real-time PCR system are good.There was a good linear relationship between Ct value and template concentration,and the amplification efficiency is high.This method can be used to quantitatively detect the latent infection of P.viticola.
引文
[1]刘延琳.葡萄霜霉病的流行病生物学.葡萄栽培与酿酒,1994(3):24-25.LIU Y L.Epidemiological biology of grape downy mildew.Viticulture and Enology,1994(3):24-25.(in Chinese)
    [2]王国珍,樊仲庆,麻冬梅,张小波,郭惠萍.贺兰山东麓酿酒葡萄霜霉病流行规律及测报技术.植物保护,2004,30(4):54-56.WANG G Z,FAN Z Q,MA D M,ZHANG X B,GUO H P.Studies on the epidemical regularity and prediction technology of grape downy mildew disease in Eastern Helan Mountain.Plant Protection,2004,30(4):54-56.(in Chinese)
    [3]雷百战,李国英,姚丽花.葡萄霜霉病发病情况的调查和研究.新疆农业科学,2004,41(5):381-384.LEI B Z,LI G Y,YAO L H.Investigation and study on Plasmopara viticola of grape.Xinjiang Agricultural Sciences,2004,41(5):381-384.(in Chinese)
    [4]吉丽丽,李海强,任毓忠,祁立敏,赵宝龙,李国英,李春.葡萄霜霉菌孢子囊扩散动态及与田间病情的相关性.果树学报,2012,29(1):94-98.JI L L,LI H Q,REN Y Z,QI L M,ZHAO B L,LI G Y,LI C.Dynamics of sporangium diffusion of Plasmopara viticola and its correlation with disease incidence in vineyard.Journal of Fruit Science,2012,29(1):94-98.(in Chinese)
    [5]CAFFI T,GILARDI G,MONCHIERO M,ROSSI V.Production and release of asexual sporangia in Plasmopara viticola.Phytopathology,2013,103(1):64-73.
    [6]VERCESI A,TOFFOLATTI S L,ZOCCHI G,GUGLIELMANN R,IRONI L.A new approach to modelling the dynamics of oospore germination in Plasmopara viticola.European Journal of Plant Pathology,2010,128(1):113-126.
    [7]金恭玺,岳永亮,宋玉萍,魏新正,任毓忠,张莉,李国英.葡萄霜霉病初次侵染来源和初侵染的特点及防治.新疆农业科学,2015,52(6):1105-1111.JIN G X,YUE Y L,SONG Y P,WEI X Z,REN Y Z,ZHANG L,LI GY.The first time infection source of grape downy mildew and its characteristics and some control approaches.Xinjiang Agricultural Sciences,2015,52(6):1105-1111.(in Chinese)
    [8]于舒怡,梁春浩,刘丽,刘长远,傅俊范.沈阳地区葡萄霜霉病流行速率、空中孢子囊密度与环境因素的相关性.植物保护学报,2016,43(3):434-441.YU S Y,LIANG C H,LIU L,LIU C Y,FU J F.Correlation among grape downy mildew epidemic rate,airborne sporangium density of Plasmopara viticola and environmental factors in Shenyang.Journal of Plant Protection,2016,43(3):434-441.(in Chinese)
    [9]赵雪艳.中国境内部分区域葡萄霜霉病菌(Plasmopara viticola)的遗传分化[D].保定:河北农业大学,2014.ZHAO X Y.Genetic differentiation of Plasmopara viticola causing grape downy mildew(GDM)in Chinese vineyards[D].Baoding:Agricultural University of Hebei,2014.(in Chinese)
    [10]石洁,王喜娜,孔繁芳,梁丽莎,王忠跃,张昊.河北昌黎与广西资源两地区葡萄霜霉菌致病力分化分析.植物保护,2017,43(1):76-82.SHI J,WANG X N,KONG F F,LIANG L S,WANG Z Y,ZHANG H.Virulence differentiation analysis of Plasmopara viticola in Changli,Hebei and Ziyuan,Guangxi.Plant Protection,2017,43(1):76-82.(in Chinese)
    [11]黄晓庆,孔祥久,孔繁芳,刘薇薇,王玉倩,王忠跃,张昊.不同寄主来源的葡萄霜霉病菌致病力测定及孢子囊大小比较.植物保护,2015,41(3):178-182.HUANG X Q,KONG X J,KONG F F,LIU W W,WANG Y Q,WANG Z Y,ZHANG H.Pathogenicity and sporangia size analysis of Plasmopara viticola from different grape varieties.Plant Protection,2015,41(3):178-182.(in Chinese)
    [12]唐兴敏,孙磊,张玮,李兴红.葡萄霜霉病抗病性鉴定方法及品种抗病性测定.植物保护,2018,44(1):166-169.TANG X M,SUN L,ZHANG W,LI X H.Development of resistance identification method and determination of disease resistance of different grape cultivars to the grapevine downy mildew.Plant Protection,2018,44(1):166-169.(in Chinese)
    [13]李卓,周婷婷,杨超,李映程,孙琦,任毓忠,赵宝龙,张莉,李国英.葡萄霜霉病菌侵染抗病和感病品种过程的组织学观察.园艺学报,2017,44(5):861-870.LI Z,ZHOU T T,YANG C,LI Y C,SUN Q,REN Y Z,ZHAO B L,ZHANG L,LI G Y.Histological studies on the infection process of the grape downy mildew between susceptible cultivar and resistant cultivar.Acta Horticulturae Sinica,2017,44(5):861-870.(in Chinese)
    [14]李荣.湖南省葡萄霜霉病的发生规律调查及病原菌遗传多样性研究[D].长沙:湖南农业大学,2014.LI R.The occurrence investigation and genetic diversity of grape downy mildew in Hunan Province[D].Changsha:Hunan Agricultural University,2014.(in Chinese)
    [15]秦文韬,黄晓庆,孔繁芳,王忠跃,张昊.葡萄霜霉病菌PCR检测方法的建立与应用.植物保护,2014,40(2):99-102,108.QIN W T,HUANG X Q,KONG F F,WANG Z Y,ZHANG H.Establishment and application of PCR for detection of Plasmopara viticola.Plant Protection,2014,40(2):99-102,108.(in Chinese)
    [16]程海星,郭月英,任霆,张静,王乐,张利霞,靳烨.实时荧光定量PCR技术原理及在食品检测中的应用.食品与发酵工业,2015,41(3):243-247.CHENG H X,GUO Y Y,REN T,ZHANG J,WANG L,ZHANG L X,JIN Y.Principle and application of fluorogenic real-time PCR in food detection.Food and Fermentation Industries,2015,41(3):243-247.(in Chinese)
    [17]ZHENG Y M,LUO Y,ZHOU Y L,ZENG X W,DUAN X Y,CAO XR,SONG Y L,WANG B T.Real-time PCR quantification of latent infection of wheat powdery mildew in the field.European Journal of Plant Pathology,2013,136(3):565-575.
    [18]孙炳剑,陈清清,袁虹霞,施艳,李洪连.SYBR Green I实时荧光定量PCR检测小麦纹枯病菌体系的建立和应用.中国农业科学,2015,48(1):55-62.SUN B J,CHEN Q Q,YUAN H X,SHI Y,LI H L.Establishment of SYBR Green I real-time PCR for quantitatively detecting Rhizoctonia cerealis in winter wheat.Scientia Agricultura Sinica,2015,48(1):55-62.(in Chinese)
    [19]贺字典,宋士清,高玉峰,石延霞,李宝聚.棘孢木霉Trichoderma asperellum在土壤中定殖量的荧光定量PCR检测.植物保护学报,2016,43(4):552-558.HE Z D,SONG S Q,GAO Y F,SHI Y X,LI B J.Detection of Trichoderma asperellum colonization in soils by real-time fluorescent quantitative PCR.Journal of Plant Protection,2016,43(4):552-558.(in Chinese)
    [20]DUVIVIER M,DEDEURWAERDER G,BATAILLE C,DE PROFTM,LEGRèVE A.Real-time PCR quantification and spatio-temporal distribution of airborne inoculum of Puccinia triticina in Belgium.European Journal of Plant Pathology,2016,145(2):405-420.
    [21]谢学文,程颖超,王锟,张红杰,杨杰,石延霞,柴阿丽,李宝聚.短密木霉菌RT-PCR检测体系的建立及其在南瓜根际的动态分析.中国生物防治学报,2018,34(4):574-581.XIE X W,CHENG Y C,WANG K,ZHANG H J,YANG J,SHI Y X,CHAI A L,LI B J.Establishment of real-time fluorescent quantitative PCR for Trichoderma brevicompactum and its dynamic change in pumpkin rhizosphere.Chinese Journal of Biological Control,2018,34(4):574-581.(in Chinese)
    [22]VALSESIA G,GOBBIN D,PATOCCHI A,VECCHIONE A,PERTOT I,GESSLER C.Development of a high-throughput method for quantification of Plasmopara viticola DNA in grapevine leaves by means of quantitative real-time polymerase chain reaction.Phytopathology,2005,95(6):672-678.
    [23]LEE J H,PARK M H,LEE S.Identification of Pseudoperonospora cubensis using real-time PCR and high resolution melting(HRM)analysis.Journal of General Plant Pathology,2016,82(2):110-115.
    [24]张娜,乾义柯,魏霜,张维,焦子伟,张祥林.应用实时荧光PCR检测甜菜霜霉病菌.新疆农业科学,2016,53(11):2077-2082.ZHANG N,QIAN Y K,WEI S,ZHANG W,JIAO Z W,ZHANG X L.Detection of Peronospora farinosa f.sp.betea Byford by real-time PCR.Xinjiang Agricultural Sciences,2016,53(11):2077-2082.(in Chinese)
    [25]于舒怡,傅俊范,刘长远,关天舒,王辉,刘丽.沈阳地区葡萄霜霉病流行时间动态及其气象影响因子分析.植物病理学报,2016,46(4):529-535.YU S Y,FU J F,LIU C Y,GUAN T S,WANG H,LIU L.Epidemic temporal dynamic of grape downy mildew and its meteorological influencing factors in Shenyang,Liaoning.Acta Phytopathologica Sinica,2016,46(4):529-535.(in Chinese)
    [26]李小龙,王库,马占鸿,王海光.基于热红外成像技术的小麦病害早期检测.农业工程学报,2014,30(18):183-189.LI X L,WANG K,MA Z H,WANG H G.Early detection of wheat disease based on thermal infrared imaging.Transactions of the Chinese Society of Agricultural Engineering,2014,30(18):183-189.(in Chinese)
    [27]LEIMINGER J,B??LER E,KNAPPE C,BAHNWEG G,HAUSLADEN H.Quantification of disease progression of Alternaria spp.on potato using real-time PCR.European Journal of Plant Pathology,2015,141(2):295-309.
    [28]毛宇宁,梁鹏,刘文波,林春花,缪卫国,郑服丛.橡胶树白粉病菌分子检测技术的建立.植物保护,2016,42(4):119-123.MAO Y N,LIANG P,LIU W B,LIN C H,MIAO W G,ZHENG F C.PCR and nested-PCR for the molecular detection of Oidium heveae Steinm.Plant Protection,2016,42(4):119-123.(in Chinese)
    [29]陈长军,李俊,赵伟,王建新,周明国.利用实时荧光定量PCR技术检测油菜菌核病菌.植物病理学报,2011,41(5):516-525.CHEN C J,LI J,ZHAO W,WANG J X,ZHOU M G.Detection of Sclerotinia sclerotiorum by a quantitative real-time PCR.Acta Phytopathologica Sinica,2011,41(5):516-525.(in Chinese)
    [30]程颖超,康华军,石延霞,柴阿丽,张红杰,谢学文,李宝聚.辣椒疫霉菌RT-PCR检测技术的建立及应用.园艺学报,2018,45(5):997-1006.CHENG Y C,KANG H J,SHI Y X,CHAI A L,ZHANG H J,XIE XW,LI B J.Development and application of real-time fluorescent quantitative PCR for detection of Phytophthora capsici.Acta Horticulturae Sinica,2018,45(5):997-1006.(in Chinese)
    [31]秦文韬.葡萄霜霉病菌快速分子检测方法研究[D].北京:中国农业科学院,2013.QIN W T.Rapid detection Plasmopara viticola by molecular methods[D].Beijing:Chinese Academy of Agricultural Sciences,2013.(in Chinese)
    [32]PARIDA M,SANNARANGAIAH S,DASH P K,RAO P V L,MORITA K.Loop mediated isothermal amplification(LAMP):A new generation of innovative gene amplification technique;perspectives in clinical diagnosis of infectious diseases.Reviews in Medical Virology,2008,18(6):407-421.
    [33]MORI Y,NAGAMINE K,TOMITA N,NOTOMI T.Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation.Biochemical and Biophysical Research Communications,2001,289(1):150-154.
    [34]宋琼,任佐华,杨华,刘二明.应用实时荧光定量PCR技术检测土壤中根肿病菌休眠孢子.湖南农业大学学报(自然科学版),2015,41(6):631-635.SONG Q,REN Z H,YANG H,LIU E M.Application of real-time fluorescent quantitative PCR for detection of resting spores of Plasmodiophora brassicae in field soil.Journal of Hunan Agricultural University(Natural Sciences),2015,41(6):631-635.(in Chinese)
    [35]王英超,甘琴华,厉艳,纪瑛,吴兴海,邵秀玲.基于gpd基因的大蒜黑腐病菌实时荧光定量PCR鉴定技术.中国农业科学,2015,48(2):390-397.WANG Y C,GAN Q H,LI Y,JI Y,WU X H,SHAO X L.Detection of Embellisia allii using real-time quantitative PCR based on glyceraldehyde-3-phosphate dehydrogenase gene.Scientia Agricultura Sinica,2015,48(2):390-397.(in Chinese)
    [36]陈清清,孙炳剑,袁虹霞,施艳,李洪连.小麦根腐病菌索氏平脐蠕孢SYBR Green I实时荧光定量PCR检测技术研究.菌物学报,2014,33(3):690-696.CHEN Q Q,SUN B J,YUAN H X,SHI Y,LI H L.Quantitative detection of Bipolaris sorokiniana in winter wheat based on SYBRGreen I real-time PCR.Mycosystema,2014,33(3):690-696.(in Chinese)
    [37]潘娟娟,骆勇,黄冲,孙振宇,赵磊,闫佳会,马占鸿.应用real-time PCR定量检测小麦条锈菌潜伏侵染量方法的建立.植物病理学报,2010,40(5):504-510.PAN J J,LUO Y,HUANG C,SUN Z Y,ZHAO L,YAN J H,MA Z H.Quantification of latent infections of wheat stripe rust by using real-time PCR.Acta Phytopathologica Sinica,2010,40(5):504-510.(in Chinese)
    [38]LEISOVA L,KUCERA L,CHRPOVA J,SYKOROVA S,SIP V,OVASNA J.Quantification of Fusarium culmorum in wheat and barley tissues using real-time PCR in comparison with DON content.Journal of Phytopathology,2006,154(10):603-611.
    [39]MORETTI C,QUAGLIA M,CERRI M,NICOSIA D E,BUONAUIOR.A real-time PCR assay for detection and quantification of Botrytis cinerea in Pelargonium×hortorum plants,and its use for evaluation of plant resistance.European Journal of Plant Pathology,2015,143(1):159-171.
    [40]年四季,袁青,殷幼平,蔡俊,王中康.实时荧光定量PCR鉴定小麦矮腥黑穗菌技术研究.中国农业科学,2009,42(12):4403-4410.NIAN S J,YUAN Q,YIN Y P,CAI J,WANG Z K.Detection of Tilletia controversa Kuhn by real-time quantitative PCR.Scientia Agricultura Sinica,2009,42(12):4403-4410.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700