桉树高代次连栽对林下植物、土壤肥力和酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of High-generation Ratations of Eucalyptus on Undergrowth,Soil Fertility and Enzyme Activities
  • 作者:李朝婷 ; 周晓果 ; 温远光 ; 朱宏光 ; 覃志伟 ; 李晓琼 ; 尤业明 ; 黄雪蔓
  • 英文作者:LI Chaoting;ZHOU Xiaoguo;WEN Yuanguang;ZHU Hongguang;QIN Zhiwei;LI Xiaoqiong;YOU Yeming;HUANG Xueman;Guangxi Key Laboratory of Forest Ecology and Conservation,Forestry College,Guangxi University;Guangxi Youyiguan Forest Ecosystem Research Station;
  • 关键词:桉树 ; 高代次连栽 ; 植物功能群 ; 土壤肥力 ; 土壤酶活性
  • 英文关键词:Eucalyptus;;successive high-generation cultivation;;plant functional groups;;soil fertility;;soil enzyme activity
  • 中文刊名:GXKK
  • 英文刊名:Guangxi Sciences
  • 机构:广西大学林学院广西森林生态与保育重点实验室;广西友谊关森林生态系统定位观测研究站;
  • 出版日期:2019-04-15
  • 出版单位:广西科学
  • 年:2019
  • 期:v.26;No.112
  • 基金:国家自然科学基金项目(31860171,31560201);; 广西重点研发计划项目(2018AB40007);; 广西自然科学基金项目(2016GXNSFBA380222,2017GXNSFAA198114);; 广西高等学校重大科研项目(201201ZD001);; 广西森林生态与保育重点实验室开放课题(QZKFKT2017-01);; 广西林业厅科研项目(桂林科字[2009]第八号)资助
  • 语种:中文;
  • 页:GXKK201902002
  • 页数:12
  • CN:02
  • ISSN:45-1206/G3
  • 分类号:23-34
摘要
深入研究桉树高代次连栽对林下植物、土壤肥力和酶活性的影响,对科学了解桉树人工林的生态环境压力,防范外来植物入侵风险和土壤质量退化,保持桉树人工林的可持续高质量发展具有重要意义。本研究采用空间代替时间的方法,以桉树低代次(第1~2代)、中代次(第3~4代)和高代次(第5~6代)连栽林分为对象,比较研究桉树高代次连栽对林下植物、土壤肥力和酶活性的影响。随着连栽代数的增加,林下植物种类和功能群组成均发生显著变化,低代次林分林下以乡土木本植物红背山麻杆、木姜子和白背桐为优势种,乡土木本植物功能群的重要值占67.46%;在中代次林分中,以乡土草本植物小花露籽草和蔓生莠竹占绝对优势,乡土草本植物功能群的重要值占78.69%;进入高连栽代数,则以入侵植物鬼针草、飞机草和阔叶丰花草占优势,入侵植物功能群的重要值占86.25%。研究发现,中、高代次连栽林分的土壤有机质、全氮、全钾、全磷、铵态氮、硝态氮、速效磷、速效钾等8种肥力指标及土壤酚氧化酶、过氧化物酶、酸性磷酸酶、脲酶、β-1,4-葡糖苷酶、N-乙酰-β氨基葡糖苷酶等6种酶活性显著下降。相关分析表明,桉树人工林林下植物多样性与8个土壤肥力指标和5种酶活性(土壤酸性磷酸酶除外)指标呈极显著的正相关关系(P<0.01);除土壤酸性磷酸酶外,酚氧化酶、过氧化物酶、脲酶、β-1,4-葡糖苷酶和N-乙酰-β-氨基葡糖苷酶均与土壤肥力指标呈极显著的正相关关系(P<0.01)。桉树高代次连栽导致林下乡土植物种类和功能群组成的显著改变,引起土壤肥力和酶活性降低,导致严重的外来植物入侵。
        In-depth study on the effects of successive high-generation Eucalyptus plantations on the undergrowth plants,soil fertility and enzyme activities, scientific understanding the ecological environmental pressure of Eucalyptus plantations,preventing the invasion risk of exotic plants and the degradation of soil quality,and maintaining the sustainable and high-quality development of Eucalyptus plantations is of great significance. By using space-for-time substitution approach,we chose a chronosequence representing the low generation( 1-2 generation,EP12),middle generation( 3-4 generation,EP34) and high generation( 5-6 generation,EP56) of Eucalyptus plantations to comparatively analyze the effects of high generation successive rotations on undergrowth plants,soil fertility and enzyme activities. With the increase of successive rotations,the species and functional groups of undergrowth plants changed significantly. The dominant species in EP12 were the native woody plants such as Alchornea trewioides,Litsea pungens and Mallotus paniculatus,and the important value of the native woody plant functional group accounted for 67.46%. In EP34 stands,the native herbaceous plants such as Ottochloa nodosa and Microstegium vagans were the dominant species with important values taking up 78. 69%. Invasive plants,such as Bidens pilosa,Eupatorium odoratum and Borreria latifolia,were dominated in EP56,with important values accounting for 86.25%.The results showed that eight soil nutrient indexes,such as soil organic matter,total nitrogen,total potassium,total phosphorus,ammonium nitrogen,nitrate nitrogen,available phosphorus and available potassium in middle and highgeneration successively planted stands,and six soil enzyme activities,such as phenoloxidase,peroxidase,acid phosphatase,urease,β-1,4-glucosidase and N-acetyl-β-aminoglycosidase,were significantly decreased. The correlation analysis showed that the diversity of undergrowth plants in Eucalyptus plantation was positively correlated with the eight soil nutrient indices and five soil enzyme activities( except soil acid phosphatase)( P < 0.01). In addition,except for soil acid phosphatase,phenoloxidase,peroxidase,urease,β -1,4-glucosidase and N-acetyl-β-aminoglycosidase were positively correlated with soil fertility indices( P < 0.01). The high-generation continuous planting of Eucalyptus resulted in significant changes in the composition of plant species and functional groups of undergrowth native plants,causing a decrease in soil fertility and enzyme activity,leading to serious invasion of alien plants.
引文
[1]PAUL OBADE DE V,LAL R.Towards a standard technique for soil quality assessment[J].Geoderma,2016,265:96-102.
    [2]张学雷.从20届世界土壤学大会主题发言看土壤学某些重要问题[J].土壤通报,2015,46(1):1-3.
    [3]BRANCO S,VIDEIRA N,BRANCO M,et al.A review of invasive alien species impacts on eucalypt stands and citrus orchards ecosystem services:Towards an integrated management approach[J].Journal of Environmental Management,2015,149:17-26.
    [4]温远光,周晓果,喻素芳,等.全球桉树人工林发展面临的困境与对策[J].广西科学,2018,25(2):107-116.
    [5]余雪标,钟罗生,杨伟东,等.桉树人工林林下植被结构的研究[J].热带作物学报,1999,20(1):66-72.
    [6]温远光,刘世荣,陈放.连栽对桉树人工林下物种多样性的影响[J].应用生态学报,2005,16(9):1667-1671.
    [7]温远光,左花,朱宏光,等.连栽对桉树人工林植被盖度、物种多样性及功能群的影响[J].广西科学,2014,21(5):463-468,483.
    [8]吴钿,刘新田,杨新华.雷州半岛桉树人工林林下植物多样性研究[J].林业科技,2003,28(4):10-13.
    [9]赵一鹤,杨宇明,杨时宇,等.培育措施对桉树人工林林下物种多样性的影响[J].云南农业大学学报,2008,23(3):309-315.
    [10]梁宏温,杨健基,温远光,等.桉树造林再造林群落植物多样性的变化[J].东北林业大学学报,2011,39(5):40-43.
    [11]李伟,张翠萍,魏润鹏.广东中西部桉树人工林植物多样性与林龄和土壤因子的关系[J].生态学报,2014,34(17):4957-4965.
    [12]温远光,严宇航,陶彦良,等.不同林地清理和培肥措施对桉树人工林植物多样性的影响[J].广西科学,2018,25(2):117-127.
    [13]温远光.连栽桉树人工林植物多样性与生态系统功能关系的长期实验研究[D].成都:四川大学,2006.
    [14]王纪杰.桉树人工林土壤质量变化[D].南京:南京林业大学,2011.
    [15]谭宏伟,杨尚东,吴俊,等.红壤区桉树人工林与不同林分土壤微生物活性及细菌多样性的比较[J].土壤学报,2014,51(3):575-584.
    [16]周晓果.林下植物功能群丧失对桉树人工林生态系统多功能性的影响[D].南宁:广西大学,2016.
    [17]覃林,马雪珍,吴水荣,等.南亚热带典型乡土阔叶人工林与桉树人工林土壤微生物量氮及可溶性氮特征[J].应用与环境生物学报,2017,23(4):678-684.
    [18]中国林学会.桉树科学发展问题调研报告[M].北京:中国林业出版社,2016.
    [19]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000.
    [20]杨洋,王继富,张心昱,等.凋落物和林下植被对杉木林土壤碳氮水解酶活性影响机制[J].生态学报,2016,36(24):8102-8110.
    [21]SINSABAUGH R L,ANTIBUS R K,LINKINS A E,et al.Wood decomposition:Nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[J].Ecology,1993,74(5):1586-1593.
    [22]VAN ELSAS J D.Soil enzymes.Methods of soil analysis:Part 2-Microbiological and biochemical properties[J].Scientia Horticulturae,1995,63(1):131-133.
    [23]PARHAM J A,DENG S P.Detection,quantification and characterization ofβ?glucosaminidase activity in soil[J].Soil Biology and Biochemistry,2000,32(8/9):1183-1190.
    [24]MAGURRAN A E.Ecological diversity and its measurement[M].Heidelberg:Springer Science+Business Media,B Y,1996.
    [25]PIELOU E C.The measurement of diversity in different types of biological collections[J].Journal of Theoretical Biology,1966,13:131-144.
    [26]WEBB C O,DONGHUE M J.Phylomatic:Tree assembly for applied phylogenetics[J].Molecular Ecology Notes,2005,5(1):181-183.
    [27]ZANNE A E,TANK D C,CORNWELL W K,et al.Three keys to the radiation of angiosperms into freezing environments[J].Nature,2014,506(7486):89-92.
    [28]WEBB C O,ACKERLY D D,KEMBEL S W.Phylocom:Software for the analysis of phylogenetic community structure and trait evolution[J].Bioinformatics,2008,24(18):2098-2100.
    [29]FAITH D P.Conservation evaluation and phylogenetic diversity[J].Biological Conservation,1992,61(1):1-10.
    [30]于立忠,朱教君,史建伟,等.辽东山区人工阔叶红松林植物多样性与生产力研究[J].应用生态学报,2005,16(12):2225-2230.
    [31]明安刚,温远光,朱宏光,等.连栽对桉树人工林土壤养分含量的影响[J].广西林业科学,2009,38(1):26-30.
    [32]叶绍明,温远光,张慧东.连栽桉树人工林土壤理化性质的主分量分析[J].水土保持通报,2010,30(5):101-105.
    [33]刘红英.连栽桉树人工林土壤酶活性及其与土壤养分的关系[D].南宁:广西大学,2013.
    [34]余雪标,白先权,徐大平,等.不同连栽代次桉树人工林的养分循环[J].热带作物学报,1999,20(3):60-66.
    [35]FATEMI F R,FERMANDEZ I J,SIMON K S,et al.Nitrogen and phosphorus regulation of soil enzyme activities in acid forest soils[J].Soil Biology and Biochemistry,2016,98:171-179.
    [36]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [37]李跃林,彭少麟.桉树人工林地土壤酶活性与营养元素含量关系研究[J].福建林业科技,2002,29(3):6-9,29.
    [38]杨远彪,吕成群,黄宝灵,等.连栽桉树人工林土壤微生物和酶活性的分析[J].东北林业大学学报,2008,36(12):10-12.
    [39]李志辉,李跃林,杨民胜,等.桉树林地土壤酶分布特点及其活性变化研究[J].中南林学院学报,2000,20(3):29-33.
    [40]REVILLINI D,GEHRING C A,JOHNSON N C.The role of locally adapted mycorrhizas and rhizobacteria in plant-soil feedback systems[J].Functional Ecology,2016,30(7):1086-1098.
    [41]MIKI T,YOKOKAWA T,KE P J,et al.Statistical recipe for quantifying microbial functional diversity from Eco Plate metabolic profiling[J].Ecological Research,2018,33(1):249-260.
    [42]FERRARA A,SALVATI L,SABBI A,et al.Soil resources,land cover changes and rural areas:Towards a spatial mismatch?[J].Science of the Total Environment,2014,478:116-122.
    [43]SALVATI L,MAVRAKIS A,COLANTONI A,et al.Complex adaptive systems,soil degradation and land sensitivity to desertification:A multivariate assessment of Italian agro-forest landscape[J].Science of the Total Environment,2015,521/522:235-245.
    [44]刘世荣,温远光.杉木生产力生态学[M].北京:气象出版社,2005.
    [45]盛伟彤,范少辉.杉木人工林长期生产力保持机制研究[M].北京:科学出版社,2005.
    [46]杨承栋.中国主要造林树种土壤质量演化与调控机理[M].北京:科学出版社,2009.
    [47]LAL R.Sequestering carbon and increasing productivity by conservation agriculture[J].Journal of Soil and Water Conservation,2015,70(3):55A-62A.
    [48]郭婧,喻林华,方晰,等.中亚热带4种森林凋落物量、组成、动态及其周转期[J].生态学报,2015,35(14):4668-4677.
    [49]EPRON D,MOUANDA C,MARESCHAL L,et al.Impacts of organic residue management on the soil C dynamics in a tropical eucalypt plantation on a nutrient-poor sandy soil after three rotations[J].Soil Biology and Biochemistry,2015,85:183-189.
    [50]RAIESI F,BEHESHTI A.Microbiological indicators of soil quality and degradation following conversion of native forests to continuous croplands[J].Ecological Indicators,2015,50:173-185.
    [51]MITCHELL P J,SIMPSON A J,SOONG R,et al.Biochar amendment and phosphorus fertilization altered forest soil microbial community and native soil organic matter molecular composition[J].Biogeochemistry,2016,130(3):227-245.
    [52]ZECHMEISTER-BOLTENSTERN S,KEIBLINGERK M,MOOSHAMMER M,et al.The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J].Ecological Monographs,2015,85(2):133-155.
    [53]LIANG C,SCHIMEL J P,JASTROW J D.The importance of anabolism in microbial control over soil carbon storage[J].Nature Microbiology,2017,2(8):17105.DOI:10.1038/nmicrobiol.2017.105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700