青藏高原风季大风集中期、集中度及环流特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Gale Concentration Period and Degree over the Tibetan Plateau and Related Atmospheric Circulation during the Windy Period
  • 作者:姚慧茹 ; 李栋梁
  • 英文作者:Yao Huiru;Li Dongliang;College of Atmospheric Science/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science & Technology;Meteorological Disaster Prevention Technology Center of Tianjin;
  • 关键词:青藏高原 ; 大风日数 ; 集中期 ; 集中度
  • 英文关键词:Tibetan Plateau;;gale days;;concentration period;;concentration degree
  • 中文刊名:ZGSS
  • 英文刊名:Journal of Desert Research
  • 机构:南京信息工程大学大气科学学院/气象灾害预报预警与评估协同创新中心;天津市气象灾害防御技术中心;
  • 出版日期:2019-01-23 11:25
  • 出版单位:中国沙漠
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划项目(2018YFC1507101);; 国家公益性行业(气象)科研专项(GYHY201506001-1);; 国家重点基础研究发展计划项目(2013CB956004);; 国家自然科学基金项目(91337109,41305080);; 江苏省普通高校研究生科研创新计划项目(KYLX_0830);; 江苏高校优势学科建设工程资助项目(PAPD)
  • 语种:中文;
  • 页:ZGSS201902015
  • 页数:12
  • CN:02
  • ISSN:62-1070/P
  • 分类号:125-136
摘要
利用青藏高原气象台站逐日最大风速数据和JRA-55再分析资料,通过引入集中期和集中度的概念,分析了1971—2012年高原大风在风季的分布形态及其环流背景。结果表明:青藏高原的大风天气在春季(3—5月)最多,在夏末秋初(8—10月)最少。1971—2012年,大风日数以14 d/10a的速度减少,同时大风日数的年较差也在缩小。大风集中期随纬度增大而延后,并且在近42年大体呈提前的趋势,从3月底4月初提前至2月底3月初。大风集中度则有增大的趋势,并取决于大风日数,大风日数越多,集中度越低。高原大风集中期受到急流系统经向位移的制约,2月和3月北非和西亚地区的副热带急流以及4月中层西风带偏南时,伴随着副热带气压偏低,青藏高原春季大风天气偏多,大风集中期偏晚。反之,大风天气偏少,集中期偏早。大风集中度的大小则与中亚和高原地区2—4月副热带急流强度有关,2月和4月副热带急流偏弱、3月急流偏强时,大风日数集中在3月,集中度较高。反之,集中度较低。春季(3月)高原大风天气是冷、暖空气系统共同作用的结果,高原东部的大风天气多受北方冷空气系统影响,高原西部的大风天气多受南方暖空气系统影响、以西南风为主。
        Based on the daily maximum wind speed data of 47 stations in the Tibetan Plateau and JRA-55 reanalysis data,by using the concept of concentration period and concentration degree,the concentration of gales over the Tibetan Plateau and related atmospheric circulation during windy period from 1971 to 2012 are analyzed. The results show that the gales over the Tibetan Plateau occur mostly in spring( from March to May) and occur least from August to October. There is a declining trend of the gale days during 1971-2012 with a rate of-14 d/10 a,and the annual range of the gale days is also reduced. The gale concentration period( GCP) over the Plateau is usually delayed with latitude and is moving up earlier in the recent 42 years,which is from the early April to early March.The gale concentration degree( GCD) has an increase tendency,and it depends on the number of gale days. The more the gale days are,the lower the concentration degree is. GCP is affected by the meridional displacement of the subtropical jet stream. In February and March,when the subtropical jet stream in North Africa and Western Asia and the low-level westerly belt in April tended to be southerly,along with the lower pressure in the subtropical region,there is more gale days over the Tibetan Plateau and GCP is delayed; Otherwise,GCP is advanced. GCD is related to the intensity of the subtropical jet stream in Central Asia and Tibetan Plateau from February to April.When the subtropical jet in February and April is weak and the jet in March is strong,the gale days over the plateau are concentrated in March and the GCD is high,and vice versa. In spring,especially in March,the occurrence of gales over the Tibetan Plateau is the result of the interaction of cold and warm air system. The gales in the eastern plateau are affected mostly by the cold air from the North,while the gales in the west of the plateau are influenced by the warm air from the South,which is dominated by the southwest wind.
引文
[1]Gao Y,Tang M,Luo S,et al.Some aspects of recent research on the Qinghai-Xizang Plateau meteorology[J].Bulletin of the American Meteorological Society,1981,62(1):31-35.
    [2]叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979:84-88.
    [3]戴加洗.青藏高原气候[M].北京:气象出版社,1990:98-271.
    [4]江滢,罗勇,赵宗慈,等.中国及世界风资源变化研究进展[J].科技导报,2009,27(13):96-104.
    [5]Mcvicar T,Roderick M,Donohue R,et al.Global review and synthesis of trends in observed terrestrial near-surface wind speeds:implications for evaporation[J].Journal of Hydrology,2012,416/417:182-205.
    [6]Guo H,Xu M,Hu Q.Changes in near-surface wind speed in China:1969-2005[J].International Journal of Climatology,2011,31(3):349-358.
    [7]Jiang Y,Luo Y,Zhao Z.Maximum wind speed changes over China[J].Acta Meteorologica Sinica,2013,27(1):63-74.
    [8]You Q,Kang S,Flügel W,et al.Decreasing wind speed and weakening latitudinal surface pressure gradients in the Tibetan Plateau[J].Climate Research,2010,42(1):57-64.
    [9]You Q,Fraedrich K,Min J,et al.Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes[J].International Journal of Climatology,2014,34(6):1873-1882.
    [10]姚慧茹,李栋梁.1971-2012年青藏高原春季风速的年际变化及对气候变暖的响应[J].气象学报,2016,74(1):60-75.
    [11]徐蜜蜜,徐海明.我国近海大风分布特征及成因[J].热带气象学报,2010,26(6):716-723.
    [12]俞燎霓,胡波,董加斌,等.1953-2012年间影响浙江的热带气旋大风的气候特征及其影响因素分析[J].应用海洋学学报,2013,32(2):171-177.
    [13]曹永旺,延军平.1971-2013年环渤海地区风速的时空特征[J].中国沙漠,2015,35(5):1320-1329.
    [14]陆逸,朱伟军,任富民,等.1980-2014年中国台风大风和台风极端大风的变化[J].气候变化研究进展,2016,12(5):413-421.
    [15]翟盘茂,李晓燕.中国北方沙尘天气的气候条件[J].地理学报,2003,58(Supp.):125-131.
    [16]李耀辉,张存杰,高学杰.西北地区大风日数的时空分布特征[J].中国沙漠,2004,24(6):715-723.
    [17]姚正毅,王涛,陈广庭,等.近40 a甘肃河西地区大风日数时空分布特征[J].中国沙漠,2006,26(1):65-70.
    [18]丁荣,张德玉,梁俊宁,等.甘肃河西走廊中部近45 a来大风沙尘暴气候背景分析[J].中国沙漠,2006,26(5):792-796.
    [19]马芹,张晓萍,万龙,等.1957-2009年黄土高原地区风速变化趋势[J].自然资源学报,2012,27(12):2124-2134.
    [20]白虎志,董安祥,李栋梁,等.青藏铁路沿线的大风特征及风压研究[J].冰川冻土,2005,27(1):111-116.
    [21]白虎志,李栋梁,董安祥,等.青藏高原及青藏铁路沿线大风沙尘日数时空特征[J].高原气象,2005,24(3):311-315.
    [22]张占峰,张焕平,马小萍.柴达木盆地平均风速与大风日数的变化特征[J].干旱区资源与环境,2014,28(10):90-94.
    [23]杨澄,付志嘉,赵晓红.青藏高原东南侧复杂地形下冬季大风诊断分析[J].高原气象,2014,33(2):146-154.
    [24]Zhang L,Qian Y.Annual distribution features of precipitation in China and their interannual variations[J].Acta Meteorologica Sinica,2003,17(2):146-163.
    [25]张录军,钱永甫.长江流域汛期降水集中程度和洪涝关系研究[J].地球物理学报,2004,47(4):622-630.
    [26]杨玮,何金海,王盘兴,等.近42年来青藏高原年内降水时空不均匀性特征分析[J].地理学报,2011,66(3):376-384.
    [27]Li X,Jiang F,Li L,et al.Spatial and temporal variability of precipitation concentration index,concentration degree and concentration period Xinjiang,China[J].International Journal of Climatology,2011,31(11):1679-1693.
    [28]Huang D,Qian Y,Zhu J.The heterogeneity of Meiyu rainfall over Yangtze-Huaihe River valley and its relationship with oceanic surface heating and intraseasonal variability[J].Theoretical and Applied Climatology,2012,108(3/4):601-611.
    [29]Wang W,Xing W,Yang T,et al.Characterizing the changing behaviours of precipitation concentration in the Yangtze River Basin,China[J].Hydrological Processes,2013,27(24):3375-3393.
    [30]Wang R,Li C.Spatiotemporal analysis of precipitation trends during 1961-2010 in Hubei province,central China[J].Theoretical and Applied Climatology,2016,124(1/2):385-399.
    [31]姜爱军,杜银,谢志清,等.中国强降水过程时空集中度气候趋势[J].地理学报,2005,60(6):1007-1014.
    [32]杨金虎,江志红,王鹏祥,等.中国西北极端降水事件年内非均匀性特征分析[J].中国沙漠,2008,28(1):178-184.
    [33]王楠,李栋梁,张杰.黄河中上游季节内强降水的时间非均匀性特征及其对大气环流的响应[J].中国沙漠,2013,33(1):239-248.
    [34]王翼,赵春雨,娄德君.东北地区冬季降雪的集中度和集中期变化特征[J].地理学报,2010,65(9):1069-1078.
    [35]邱博,张录军,谭慧慧.中国大风集中程度及气候趋势研究[J].气象科学,2013,33(5):543-548.
    [36]全国气象防灾减灾标准化技术委员会.GB/T 28591-2012风力等级[S].北京:中国标准出版社,2012.
    [37]KobayashiS,Ota Y,Harada Y,et al.The JRA-55 reanalysis:general specifications and basic characteristics[J].Journal of the Meteorological Society of Japan(Ser.II),2015,93(1):5-48.
    [38]HaradaY,Kamahori H,Kobayashi C,et al.The JRA-55 reanalysis:representation of atmospheric circulation and climate variability[J].Journal of the Meteorological Society of Japan(Ser.II),2016,94(3):269-302.
    [39]姚慧茹,李栋梁.东亚副热带急流的空间结构及其与中国冬季气温的关系[J].大气科学,2013,37(4):881-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700