地下石油储备库施工期巷道式网络通风方案选择
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Choice of gallery network ventilation schemes for setting-up underground oil storage caverns
  • 作者:孙建春 ; 张恒 ; 黄沐言 ; 王路 ; 涂鹏
  • 英文作者:SUN Jian-chun;ZHANG Heng;HUANG Mu-yan;WANG Lu;TU Peng;Key Laboratory of Transportation Tunnel Engineering,Ministry of Education,Southwest Jiaotong University;Institute of Foreign Languages,Sichuan Technology and Business University;Department of Road and Bridge Engineering,Sichuan Vocational and Technical College of Communications;
  • 关键词:安全卫生工程技术 ; 大型洞库群 ; 施工通风 ; 自然通风 ; 竖井效应
  • 英文关键词:safety and health engineering technology;;large cavern group;;construction ventilation;;natural ventilation;;shaft effect
  • 中文刊名:AQHJ
  • 英文刊名:Journal of Safety and Environment
  • 机构:西南交通大学交通隧道工程教育部重点实验室;四川工商学院外语学院;四川交通职业技术学院道路与桥梁工程系;
  • 出版日期:2019-04-25
  • 出版单位:安全与环境学报
  • 年:2019
  • 期:v.19;No.110
  • 基金:国家自然科学基金项目(51508477);; 中央高校基本科研业务费专项(2682016CX012)
  • 语种:中文;
  • 页:AQHJ201902017
  • 页数:10
  • CN:02
  • ISSN:11-4537/X
  • 分类号:106-115
摘要
大型地下洞库群施工期主要采用压入式通风或增设通风竖井来解决通风问题,但受施工通道尺寸限制无法增大风管供风,结果会导致通风恶化;竖井往往依靠经验或场地情况在洞库埋深较浅的位置设置,容易出现风网混乱、通风短路等问题。依托锦州地下石油储备工程,提出了适用于不同洞内外温差的竖井进风及排风方案,解决了施工中需要的通风量大、工作面多、污染量大等诸多问题。并基于CFD数值仿真,分析了洞库内CO及风速分布规律。结果表明,竖井进风及排风方案通风10 min后,洞库施工作业区域的CO质量浓度已基本降至安全质量浓度(30 mg/m~3)以下,能够满足安全快速施工的要求。由于竖井排风方案污风运移路径短,且在竖井自然排风及机械通风共同作用下,污风能够快速排出洞外,通风20 min后整个洞库的CO质量浓度基本降至安全质量浓度。若通风线路不超过2 km,则可采用在竖井底部/顶部布置轴流风机、引入新鲜风、洞内不布置射流风机或在风流转向处辅以射流风机的方式。合理有效地将新鲜风流引入主洞室是实施该竖井进风方案的关键所在,竖井底部的轴流风机布置位在距离竖井5 m的洞库中轴线上,其引流效率最高。温差越大,竖井自然通风效果相对越好,冬季利用竖井排风的通风效果要好于夏季利用竖井进风的通风方式。
        Taking Jinzhou underground oil storage caverns as a case study sample,this paper intends to propose an air inlet and exhaust treating scheme for the vertical shaft fit for the temperature exchange between the inside and outside of the storage caverns. As is known,such artificial air-compressive ventilation or the newly-built vertical shaft are mainly adopted to solve the ventilation problem in the grand-size underground cavern groups.However,it remains inconvenient to supply enough fresh air needed below the earth surface due to the limited air-exchange channel,and, therefore, resulting in the ventilation restriction.Therefore,as it is often the case,for such shafts to rely on the experience or the particular site conditions to set up likely in the shallow depths of the underground caverns so as to able to deal with the trouble in inefficiency of the air ventilation status-in-situ,say,ventilation short circuit. However,as the ventilation channel is by nature designed scientifically,rationally and reasonably,it should be possible to solve such problems as the large air volume,multiple working faces and great amounts of pollution also in the underground construction sites,which demands us to analyze and control the distribution law of CO spreading and wind-blowing speed in the cavern by using the CFD numerical simulation. The results of our research show that the CO concen-tration in the working area of the cavern can be basically made to drop to the safe concentration of 30 mg/m~3 in the air inlet and exhaust schemes through a 10-minute ventilation, which can meet the requirements of the safe and fast construction. However,since the short limited transfer path of the polluted air in the air exhausting scheme,the CO concentration of the entire cavern basically tends to decrease to the safe volume after the ventilation has done for 20 minutes under the combined action of the natural and mechanical ventilation. What is more,if the ventilation line is not more than 2 km long in distance,the axial fan can be installed at the bottom or top of the shaft to introduce fresh air in,whereas the jet fan is not arranged in the cavern or the jet fan is installed in the wind direction. A reasonable and effective introduction of the fresh air to the main cavern is the key to the implementation of the air inlet scheme for the shaft. Besides,an axial ventilating fan can also be installed at the bottom of the shaft in the central axis direction of the cavern 5 m away from the shaft,which can produce the highest efficiency in the air introduction. Thus,it can be concluded that,the greater the temperature difference,the better the natural ventilation effect of the shaft. And,all in all,the natural ventilation effect of the shaft as the ventilation outlet source should function better in winter than that as the inlet one in summer.
引文
[1] HONG Kairong(洪开荣). State-of-art and prospect of tunnels and underground works in China[J]. Tunnel Construction(隧道建设),2015,35(2):95-107.
    [2] CHEN Haifeng(陈海锋). Study of optimization of construction ventilation of Wanhua Yantai underground liquefied hydrocarbon water-sealed cavern group[J]. Tunnel Construction(隧道建设),2017,37(2):230-235.
    [3] LI Xiuchun(李秀春),YANG Qixin(杨其新),JIANG Yajun(蒋雅君),et al. The simulation computing research on air cabin construction ventilation in underground storage caverns[J]. Chinese Journal of Underground Space and Engineering(地下空间与工程学报),2015,11(2):462-468.
    [4] ZHAO Xiao(赵晓),WANG Ruikai(王瑞凯),ZHANG Wenhui(张文辉). Measures of improving ventilation efficiency during construction in complex caverns[J].Journal of Yangtze River Scientific Research Institute(长江科学院院报),2014,31(8):117-121.
    [5] WANG Li(王礼),XIE Xianping(谢贤平),HE Sunwen(和孙文),et al. Effect analysis on application of large-diameter ducts in ventilation of underground caverns[J]. Tunnel Construction(隧道建设),2008,28(1):19-21.
    [6] YE Minmin(叶敏敏),LI Yanling(李艳玲),MO Zhengyu(莫政宇),et al. 3D numerical simulation on the construction ventilation of large underground tunnelchamber groups[J]. China Rural Water and Hydropower(中国农村水利水电),2010(4):94-97.
    [7] ZENG Xi(曾惜). Study on construction ventilation of large hydropower station underground caverns(大型水电站地下洞室群施工期通风研究)[D]. Chengdu:Southwest Jiaotong University,2014.
    [8] YAO Yuantao(姚元涛). Large underground cavern ventilation technology research(大型地下水封洞库通风技术研究)[D]. Jinan:Shandong University,2015.
    [9] CAO Zhengmao(曹正卯). Study on ventilation characteristics and key technologies of long tunnels and complicated underground engineering in the construction stage(长大隧道与复杂地下工程施工通风特性及关键技术研究)[D]. Chengdu:Southwest Jiaotong University,2016.
    [10] ZHANG Heng(张恒),LIN Fang(林放),ZHANG Kai(张凯),et al. Establishment of a ventilation network and the shaft ventilation effect in a large underground cavern group[J]. Modern Tunneling Technology(现代隧道技术),2018,55(1):203-209,223.
    [11] HEERDEN J,SULLIVAN P. The application of CFD for evaluation of dust suppression and auxiliary ventilating systems used with continuous miners[C]//Proceedings of the Sixth US Mine Ventilation Symposium. Englewood,Colorado:Society for Mining,Metallurgy,and Exploration,1993:293-297.
    [12] TORNO S,TORAO J,ULECIA M,et al. Conventional and numerical models of blasting gas behaviour in auxiliary ventilation of mining headings[J]. Tunneling and Underground Space Technology,2013,34(2):73-81.
    [13] HARGREAVES D M,LOWNDES I S. The computational modeling of the ventilation flows within a rapid development drivage[J]. Tunneling and Underground Space Technology,2007,22(2):150-160.
    [14] HAQUE M N,KATSUCHI H,YAMADA H,et al.Strategy to develop efficient grid system for flow analysis around two-dimensional bluff bodies[J]. KSCE Journal of Civil Engineering,2016,20(5):1913-1924.
    [15] YANG Jiasong(杨家松),XIE Wenqing(谢文清),YANG Heng(杨恒),et al. A network ventilation method for underground large cavern construction(一种地下大型洞库施工网络通风方法):China,201410829747. 8[P]. 2015-06-23.
    [16] SUN Sanxiang(孙三祥),LEI Pengshuai(雷鹏帅),ZHANG Yunxia(张云霞). Comparison of the ventilation effects between parallel-fans operation and that of serialfans in partition technique in inclined shafts[J]. Journal of Safety and Environment(安全与环境学报),2014,14(1):78-81.
    [17] LIU Yixuan(刘艺璇),YANG Yongbin(杨永斌). Experimental study of the influence of the longitudinal ventilation on the fire parameters in highway tunnels[J].Journal of Safety and Environment(安全与环境学报),2017,17(5):1777-1782.
    [18] ZHANG Heng(张恒),WU Jin(吴瑾),CHEN Shougen(陈寿根),et al. Impact of the fan arrangement mode on the construction ventilation effect along the highly intensive gas tunnel[J]. Journal of Safety and Environment(安全与环境学报),2018,18(5):1833-1840.
    [19] ZHANG Heng(张恒),LIN Fang(林放),SUN Jianchun(孙建春),et al. CFD analysis of tunnel construction ventilation effect based on typical roughness model[J]. China Railway Science(中国铁道科学),2016,37(5):58-65.
    [20] YANG Lixin(杨立新),HONG Kairong(洪开荣),LIU Zhaowei(刘招伟),et al. Modern tunneling ventilation technology(现代隧道施工通风技术)[M]. Beijing:China Communications Press,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700