煤储层固井胶结强度性能及改善方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on bonding strength performances and improved method of coalbed methane well cementation in coal reservoir
  • 作者:王力 ; 郑飞 ; 孙晗森 ; 马洪涛 ; 王德桂 ; 王成文
  • 英文作者:WANG Li;ZHENG Fei;SUN Hansen;MA Hongtao;WANG Degui;WANG Chengwen;Research Center,China United Coalbed Methane Company Limited;School of Petroleum Engineering,China University of Petroleum-East China;
  • 关键词:煤层气井 ; 润湿性 ; 界面胶结强度 ; 表面活性剂 ; 硅烷偶联剂
  • 英文关键词:coalbed methane well;;wettability;;interface bonding strength;;surfactant;;silane coupling agent
  • 中文刊名:MTKJ
  • 英文刊名:Coal Science and Technology
  • 机构:中联煤层气有限责任公司研究中心;中国石油大学(华东)石油工程学院;
  • 出版日期:2019-02-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:v.47;No.531
  • 基金:国家科技重大专项资助项目(2016ZX05044)
  • 语种:中文;
  • 页:MTKJ201902010
  • 页数:6
  • CN:02
  • ISSN:11-2402/TD
  • 分类号:64-69
摘要
为了解决煤岩表面亲水润湿性差导致的煤层段固井质量差的难题,优选了不同类型的表面活性剂和硅烷偶联剂作为煤体表面润湿改性剂,试验研究了对煤体表面的润湿改性对界面胶结强度等改善效果,并测试评价了对水泥浆流变性能、凝结时间、抗压强度等影响规律。研究结果表明:表面活性剂、硅烷偶联剂均可有效改善煤体表面亲水润湿性;但硅烷偶联剂却不会提高煤层界面胶结强度,其原因是硅烷偶联剂水解产生Si-OH基团吸附在水泥颗粒表面形成包裹层,阻止水泥与水进一步接触,对水泥有较强的缓凝副作用,不利于煤层界面胶结;含醚、硫酸根的阴表面活性剂对水泥没有缓凝副作用,与水泥浆相容性好,能够显著提高煤层界面胶结强度达1.71 MPa,其最优浓度为0.3%。
        In order to solve the problems of poor well cementation quality at the seam section caused by the poor hydrophilic wettability of coal surface,different type surfactants and silane coupling agents were optimized as the wettability modifier of coal surface. The wettability modification,interface bonding strength and other improved effects of coal surface were tested and studied. The test evaluation was conducted on the rheological performance,setting time,compressive strength and other influence law of the cement slurry with wettability modifer.The study results showed that the surfactant and silane coupling agent both could effectively improve the hydrophilic wettability of coal surface,but the silane coupling agent could not improve the interface bonding strength of the coal. Because the hydrolysis of the silane coupling agent would produce the Si-OH groups,which could adsorb on the cement partical surfaces to form the wrapping layer,and stopping the further contract between the cement and water,the silane coupling agents would have a high retarder effect and would not be favorable to the interface bonding of the seam. The anionic surfactant with the ether and sulfate would have no retarder side effect to the cement,and a good compatibility with the cement slurry. So that the anionic surfactant could obviously improve the interface bonding strength( 1. 71 MPa) of the seam and the optimum concentration of surfactant was optimized as 0.3 %.
引文
[1]孟召平,刘翠丽,纪懿明.煤层气/页岩气开发地质条件及其对比分析[J].煤炭学报,2013,38(5):728-736.MENG Zhaoping,LIU Cuili,JI Yiming. Geological conditions of coalbed methane and shale gas exploitationand their comparison analysis[J]. Journal of China Coal Society,2013,38(5):728-736.
    [2] MOHAMMAD Haidher Syed Gaus,SHAIKH Shahnawaz. Coalbed methane cementing best practices-Indian case history[C]//SPE International Oil and Gas conference,China,2010.
    [3] DASGUPTA Dasgupta,SUYAN Kumi,BANERJEE Satinath,et al.Successful casing cementation in total loss conditions-case histories[C]//SPE Middle East Drilling Technology Conference,Bahrain,2009.
    [4] HUANG W,LEI M,QIU Z,et al.Damage mechanism and protection measures of a coalbed methane reservoir in Zhengzhuang Block[J].Journal of Natural Gas Science and Engineering,2015,26:683-694
    [5] FRED Sabins. Ultra-light weight cement[R].Denver:Gulf of Mexico Program Management Committee Meeting,2003.
    [6]刘大锰,李俊乾.我国煤层气分布赋存主控地质因素与富集模式[J].煤炭科学技术,2014,42(6):19-24.LIU Dameng,LI Junqian. Main geologicalcontrols on distribution and occurrence and enrichment patterns of coalbed methane in China[J]. Coal Science and Technology,2014,42(6):19-24.
    [7]曹代勇,姚征,李靖.煤系非常规天然气评价研究现状与发展趋势[J].煤炭科学技术,2014,42(1):89-92,105.CAO Daiyong,YAO Zheng,LI Jing.Evaluation status and development trend of unconventional gas in coal measure[J]. Coal Science and Technology,2014,42(1):89-92,105.
    [8]王南,裴玲,雷丹凤,等.中国非常规天然气资源分布及开发现状[J].油气地质与采收率,2015,22(1):26-31.WANG Nan,PEI Ling,LEI Danfeng,et al. Analysis of unconventional gas resources distribution and development status in China[J]. Petroleum Geology and Recovery Efficiency,2015,22(1):26-31.
    [9]琚宜文,李清光,颜志丰,等.煤层气成因类型及其地球化学研究进展[J].煤炭学报,2014,39(5):806-815.JU Yiwen,LI Qingguang,YAN Zhifeng,et al. Origin types of CBM and their geochemical research progress[J]. Journal of China Coal Society,2014,39(5):806-815.
    [10]龙胜祥,李辛子,叶丽琴,等.国内外煤层气地质对比及其启示[J].石油与天然气地质,2014,35(5):696-703.LONG Shengxaing,LI Xinzi,YE Liqin,et al. Comparison and enlightenment of coalbed methane geology at home and abroad[J].Oil and Gas Geology,2014,35(5):696-703.
    [11]赵贤正,杨延辉,孙粉锦,等.沁水盆地南部高阶煤层气成藏规律与勘探开发技术[J].石油勘探与开发,2016,43(2):303-309.ZHAO Xianzheng,YANG Yanhui,SUN fenjin,et al.. Enrichment mechanism and exploration and development technologies of high rank coalbed methane in south Qinshui Basin,Shanxi Province[J]. Petroleum Exoloration and Development,2016,43(2):303-309.
    [12]申建,秦勇,张春杰,等.沁水盆地深煤层注入CO2提高煤层气采收率可行性分析[J].煤炭学报,2016,41(1):156-161.SHEN Jian,QIN Yong,ZHANG Chunjie,et al. Feasibility of enhanced coalbed methane recovery by CO2sequestration into deep coalbed of Qinshui Basin[J]. Journal of China Coal Society,2016,41(1):156-161.
    [13]陈贞龙,汤达祯,许浩,等.黔西滇东地区煤层气储层孔隙系统与可采性[J].煤炭学报,2010,35(S1):158-163.CHEN Zhenlong,TANG Dazhen,XU Hao,et al. The pore system properties of coalbed methane reservoirs andrecovery in western Guizhou and eastern Yunnan[J]. Journal of China Coal Society,2010,35(S1):158-163.
    [14]窦新钊,姜波,秦勇,等.黔西地区晚二叠世煤层变质规律及机理研究[J].煤炭学报,2012,37(3):424-429,110.DOU xinzhao,JIANG Bo,QIN Yong,et al. Pattern and mechanism of metamorphism of latepermian coal in western Guizhou[J]. Journal of China Coal Society,2012,37(3):424-429,110.
    [15]左景栾,孙晗森,吴建光,等.煤层气超低密度固井技术研究与应用[J].煤炭学报,2012,37(12):2076-2082.ZUO Jingluan,SUN Hansen,WU Jianguang,et al. Study and application of ultra low density cementing technology for coalbed methane[J]. Journal of China Coal Society,2012,37(12):2076-2082.
    [16]顾军,秦文政. MTA方法固井二界面整体固化胶结试验[J].石油勘探与开发,2010,37(2):226-231.GU Jun,QIN Wenzheng. Experiments on integrated solidification and cementation of the cement-formation interface based on mud cake to agglomerated cake(MTA)method[J]. Petroleum Exploration and Development,2010,37(2):226-231
    [17]秦磊斌,顾军,汤乃千,等.温度对煤层气井固井二界面胶结强度的影响[J].中国煤炭地质,2017,29(4):48-51.QIN Leibin,GU Jun,Tang Naiqian,et al. Impact from temperature on cementation strength of CBM well cement-formation interface[J]. Coal Geology of China,2017,29(4):48-51.
    [18]杨振杰,李家芬,苏长明,等.新型胶乳冲洗隔离液试验[J].天然气工业,2007,27(9):51-53.YANG Zhenjie,LI Jiafen,Su Changming,et al. Experimental study on latex flush spacer fiuid[J]. Natural Gas Industry,2007,27(9):51-53.
    [19]陈二丁,王成文,孟仁洲.一种高效清除井壁滤饼的新型固井冲洗液[J].天然气工业,2015,35(8):69-74.CHEN Erding,WANG chengwen,MENG Renzhou. A new cementation flushing fluid for efficiently removing wellbore filter cake[J].Natural Gas Industry,2015,35(8):69-74.
    [20]郭辛阳,步玉环,沈忠厚,等.井下复杂温度条件对固井界面胶结强度的影响[J].石油学报,2010,31(5):834-837.GUO Xinyang,BU Yuhuan,SHEN Zhonghou,et al. The effect of downhole complex temperature conditions on the interfacial bonding strength in cementing[J]. Acta Petrolei Sinica,2010,31(5):834-837.
    [21]崔茂荣,马勇.评价钻井液滤饼对固井二界面胶结质量影响的新方法[J].天然气工业,2006,26(12):92-93.CUI Maorong,MA Yong. A new method for evaluating the effects of drilling fluid filter cake on bond quality of the second cementing interface[J]. Natural Gas Industry,2006,26(12):92-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700