不同氧化程度氧化石墨烯氨气敏感性能及机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sensitivity and Mechanism of Graphene Oxide with Different Oxidation Degree
  • 作者:杨建召 ; 孙红娟 ; 彭同江 ; 雷德会 ; 岳焕娟
  • 英文作者:YANG Jian-zhao;SUN Hong-juan;PENG Tong-jiang;LEI De-hui;YUE Huan-juan;School of Environment and Resources, Southwest University of Science and Technology;Education Ministry Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology;Institute of Mineral Materials and Application,Southwest University of Science and Technology;
  • 关键词:氧化石墨烯 ; 氧化程度 ; 含氧官能团 ; 氨敏性能 ; 功能材料
  • 英文关键词:graphene oxide;;different oxidation degree;;oxygen-containing functional groups;;ammonia sensitivity;;functional materials
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:西南科技大学环境与资源学院;西南科技大学固体废物处理与资源化教育部重点实验室;西南科技大学矿物材料及应用研究所;
  • 出版日期:2018-12-17 15:59
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金资助项目(U1630132,41772036);; 四川省科技厅项目(2017GZ0114,2016GZ0428);; 西南科技大学研究生创新基金(18ycx040)~~
  • 语种:中文;
  • 页:JXHG201903004
  • 页数:8
  • CN:03
  • ISSN:21-1203/TQ
  • 分类号:25-31+81
摘要
基于改进的Hummers法,通过改变氧化剂KMnO_4用量制备了各种含氧官能团含量差异明显的氧化石墨烯(GOs)水相分散液,采用旋涂法制备了厚度均一的GOs气敏元件。利用XRD、FTIR、XPS对样品的结构、官能团种类及含量进行了分析;利用气敏测试系统对GOs气敏元件的NH_3敏感性能进行了测试。结果表明:GOs含有羟基(—OH)、环氧基〔—CH(O)CH—〕等含氧官能团,随KMnO4用量的增加,GOs中羟基(—OH)的相对含量(XPS测得)先增加后减少,当m(KMnO_4)∶m(石墨)=3∶1时,—OH的相对含量最高。不同氧化程度的GOs气敏元件对NH_3灵敏度与其—OH的相对含量呈正相关性,GOs中—OH相对含量为43.75%时,气敏元件对体积分数为0.008%的NH_3最大灵敏度达到78%,且有较好的稳定性和重复性,重复性误差为3.1%。GOs对NH_3分子的响应存在两种机制:NH_3分子进入GOs片层间水分子层后水解形成NH_4~+的离子电导,和GOs结构层上含氧官能团对NH_3分子吸附后形成氢键的电荷转移。
        Graphene oxide(GOs) aqueous dispersions with different content of oxygen-containing functional groups were prepared by changing the amount of oxidant KMnO_4. And the graphene oxide film prepared by spin coating method. The type and content of the functional groups, spectral characteristic were implemented by XRD, FTIR, XPS. NH_3 sensitivity is tested by WS-30 A gas sensing system. The result shows that graphite oxide contains oxygen functional groups such as hydroxyl group(—OH), epoxy group(—CH(O)CH—) and so on.The relative content of—OH in GOs increases first and then decreases with the increase of KMnO_4 content. The relative content of—OH is the highest when m(KMnO_4)∶m(Graphite)=3∶1. The sensitivity of different degrees of oxidation GOs gas sensors to NH_3 is positively correlated with the relative content of —OH. When the relative content of —OH in GOs is 43.75%, the maximum sensitivity of gas sensor to NH_3 with volume fraction of 0.008% is up to 78%, and the gas sensor exhibits good stability and repeatability, the minimum error of repeatability is 3.1%. There are two mechanisms for the response of GOs to NH_3 molecules: the ionic conductance mechanism of NH_3 molecules entering GOs interlayer water molecules after hydrolysis to form NH_4~+ ions; the charge transfer mechanism of hydrogen bonds formed by oxygen functional groups on the GOs structure layer after adsorbing NH_3 molecules.
引文
[1]Zhou X,Wang X,Wang B,et al.Preparation,characterization and NH3-sensing properties of reduced graphene oxide/copper phthalocyanine hybrid material[J].Sensors&Actuators B Chemical,2014,193(3):340-348.
    [2]Tai Huiling(太惠玲),Preparation and NH3 gas-sensing characteristic research of conducting polymer nanocomposite thin films[D].Chengdu:University of Electronic Science and Technology of China(电子科技大学),2008.
    [3]Wang T,Huang D,Yang Z,et al.A review on graphene-based gas/vapor sensors with unique properties and potential applications[J].Nano-Micro Letters,2016,8(2):95-119.
    [4]Huang Y,Wieck L,Tao S.Development and evaluation of optical fiber NH3,sensors for application in air quality monitoring[J].Atmospheric Environment,2013,66(2):1-7.
    [5]Comini E,Baratto C,Concina I,et al.Metal oxide nanoscience and nanotechnology for chemical sensors[J].Sensors&Actuators BChemical,2013,179(2):3-20.
    [6]Kadhim I H,Hassan H A,Abdullah Q N.Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates[J].Nano-Micro Letters,2016,8(1):20-28.
    [7]Wisser F M,Grothe J,Kaskel S.Nanoporous polymers as highly sensitive functional material in chemiresistive gas sensors[J].Sensors&Actuators B Chemical,2016,223:166-171.
    [8]Hou Ruonan(侯若男),Peng Tongjiang(彭同江),Sun Hongjuan(孙红娟),et al.Gas sensing property of graphene oxide and its thermal reduction products on CH4 and H2 gases[J].Journal of Functional Materials(功能材料),2015,1(16):16079-16085.
    [9]Li Hui(李辉),Gao Zhihui(高致慧),Lin Weihao(林伟豪),et al.Research on desorption of gas sensing properties based on grapheme[J].Chinese Journal of Sensors and Actuators(传感技术学报),2016,29(7):990-993.
    [10]Sun Yufeng(孙宇峰),Liu Shaobo(刘少波),Li Huihua(李会华),et al.Synthesis of graphene oxide and its gas sensing properties to NH3[J].Journal of Functional Materials(功能材料),2012,43(6):712-714.
    [11]Feng Q,Li X,Wang J.Percolation effect of reduced graphene oxide(rGO)on ammonia sensing of rGO-SnO2,composite based sensor[J].Sensors&Actuators B Chemical,2017,243:1115-1126.
    [12]Han M,Liu W,Qu Y,et al.Graphene oxide-SnO2 nanocomposite:Synthesis,characterization,and enhanced gas sensing properties[J].Journal of Materials Science Materials in Electronics,2017,28(2):1-8.
    [13]You R C,Yoon Y G,Choi K S,et al.Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2sensing[J].Carbon,2015,91:178-187.
    [14]Omidvar A,Mohajeri A.Edge-functionalized graphene nanoflakes as selective gas sensors[J].Sensors&Actuators B Chemical,2014,202(10):622-630.
    [15]Wang X,Li X,Zhao Y,et al.The influence of oxygen functional groups on gas-sensing properties of reduced graphene oxide(rGO)at room temperature[J].Rsc Advances,2016,6(57):52339-52346.
    [16]Wang Quanjun(王泉珺),Sun Hongjuan(孙红娟),Peng Tongjiang(彭同江),et al.Influence of oxidation degree of graphene oxide on adsorption performance for methylene blue[J].Journal of Chemical Industry and Engineering(化工学报),2017,68(4):1712-1720.
    [17]Xu J,Hu Y,Song L,et al.Thermal analysis of poly(vinyl alcohol)/graphite oxide intercalated composites[J].Polymer Degradation&Stability,2001,73(1):29-31.
    [18]Chen Jungang(陈军刚),Peng Tongjiang(彭同江),Sun Hongjuan(孙红娟),et al.Influence of reductiontemperature on functional groups,structures and humidity sensitivity of graphite oxide[J].Chinese Journal of Inorganic Chemistry(无机化学学报),2014,30(4):779-785.
    [19]Wang X,Dou W.Preparation of graphite oxide(GO)and the thermal stability of silicone rubber/GO nanocomposites[J].Thermochimica Acta,2012,529(529):25-28.
    [20]Han Z D,Wang J Q.XRD/XPS study on oxidation of graphite[J].Chinese Journal of Inorganic Chemistry,2003,19(12):1366-1370.
    [21]Acik M,Mattevi C,Gong C,et al.The role of intercalated water in multilayered graphene oxide[J].Acs Nano,2010,4(10):5861-5868.
    [22]Tiwari D C,Atri P,Sharma R.Sensitive detection of ammonia by reduced graphene oxide/polypyrrole nanocomposites[J].Synthetic Metals,2015,203:228-234.
    [23]Sun Hongjuan(孙红娟),Peng Tongjiang(彭同江).Preparation of graphene materials by graphite oxidation reduction[M].Beijing:Science Press(科学出版社),2015:220-221.
    [24]Dimiev A M,Alemany L B,Tour J M.Graphene oxide.Origin of acidity,its instability in water,and a new dynamic structural model[J].Acs Nano,2013,7(1):576-588.
    [25]Rozada R,Paredes J I,López M J,et al.From graphene oxide to pristine graphene:Revealing the inner workings of the full structural restoration[J].Nanoscale,2015,7(6):2374-90.
    [26]Ranjan P,Kumar A,Thakur A D.Free standing graphene oxide films for gas sensing applications[J].Materials Today Proceedings,2018,5(1):732-736.
    [27]Lu G,Ocola L E,Chen J.Reduced graphene oxide for room-temperature gas sensors.[J].Nanotechnology,2009,20(44):445502.
    [28]Peng Y,Junhua L I.Ammonia adsorption on graphene and graphene oxide:A first-principles study[J].Frontiers of Environmental Science&Engineering,2013,7(3):403-411.
    [29]Anasthasiya A N A,Khaneja M,Jeyaprakash B G.Electronic structure calculations of ammonia adsorption on graphene and graphene oxide with epoxide and hydroxyl groups[J].Journal of Electronic Materals,2017,46(10):5642-5656.
    [30]Tang S,Cao Z.Adsorption and dissociation of ammonia on graphene oxides:A First-Principles Study[J].Journal of Physical Chemistry C,2012,116(15):8778-8791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700